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Abstract

According to the standard ΛCDM model, the matter and dark energy densities
(ρm and ρDE) are only comparable for a brief time. Using the temporal distribution
of terrestrial planets inferred from the cosmic star formation history, we show
that the observation ρm ∼ ρDE is expected for terrestrial-planet-bound observers
under ΛCDM, or under any model of dark energy consistent with observational
constraints. Thus we remove the coincidence problem as a factor motivating
dark energy models.

We compare the Sun to representative stellar samples in 11 properties plausibly
related to life. We find the Sun to be most anomalous in mass and galactic
orbital eccentricity. When the 11 properties are considered together we find that
the probability of randomly selecting a star more typical than the Sun is only
29 ± 11%. Thus the observed “anomalies” are consistent with statistical noise.
This contrasts with previous work suggesting anthropic explanations for the
Sun’s high mass.

The long-term future of dissipative processes (such as life) depends on the
continued availability of free energy to dissipate thereby increasing entropy. The
entropy budget of the present observable Universe is dominated by supermassive
black holes in galactic cores. Previous estimates of the total entropy in the observ-
able Universe were between ∼ 10101 k and ∼ 10103 k. Using recent measurements
of the supermassive black hole mass function we find the total entropy in the
observable Universe to be Sobs = 3.1+3.0

−1.7 × 10104 k, at least an order of magnitude
higher than previous estimates. We compute the entropy in 3 new subdominant
components and report a new entropy budget of the Universe with quantified
uncertainties. We evaluate upper bounds on the entropy of a comoving volume
(normalized to the present observable Universe). Under the assumption that
energy in matter is constant in a comoving volume, the availability of free energy
is found to be finite and the future entropy in the volume is limited to a constant
of order 10123k. Through this work we uncover a number of unresolved questions
with implications for the ultimate fate of the Universe.
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CHAPTER 1

INTRODUCTION

I may be reckless, may be a fool,
but I get excited when I get confused.

- Fischerspooner, “The Best Revenge”

1.1. Copernicanism and Anthropic Selection

The Copernican idea, that we perceive the Universe from an entirely mediocre
vantage point, is deeply embedded in the modern scientific world view. Before
the influences of Copernicus, Galileo and Newton in the 16th and 17th centuries
the prevalent world view was anthropocentric: we and the Earth were at the
center of the Universe, and the heavenly bodies lived on spherical planes around
us. The paradigm shift to a Copernican world view was ferociously resisted by
theologians and philosophers, but was eventually adopted because of its ability
to explain mounting physical and astronomical observations.

It is with great esteem that we remember these pioneers of modern science, who
taught us that observational evidence trumps philosophical aesthetics. However,
upon pedantic inspection, the Copernican idea leads to untrue predictions. For
example, if we did occupy a mediocre vantage point then the density of our
immediate environment would be ∼ 10−30 g cm−3. However the density of our
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actual environment is ∼ 1 g cm−3. A napkin calculation considering the density
and size of collapsed objects suggest the chance of us living in an environment
as dense or denser by pure chance is around 1 in 1030

− a significant signal.

There are selection effects connected with being an observer. They determine,
to some degree, where and when we observe the Universe. At the cost of strict
Copernicanism we must make considerations for anthropic selection as a class of
observational selection effect (Dicke, 1961; Carter, 1974; Barrow and Tipler, 1986;
Bostrom, 2002), and we must take the appropriate steps to remove anthropic
selection effects from our data.

1.2. The Cosmic Coincidence Problem

Recent cosmological observations including observations of the cosmic microwave
background temperature fluctuations, the luminosity-redshift relation from su-
pernova light-curves and the matter power spectrum measured in the large scale
structure and Lyman-Alpha forests of quasar spectra, have converged on a cosmo-
logical model which is expanding, and whose energy density is dominated by a
mysterious component referred to generally as dark energy (∼ 73%) but contains
a comparable amount of matter (∼ 27%) and some radiation (∼ 5 × 10−5%). See
e.g. (Seljak et al., 2006) and references therein.

The energy in these components drives the expansion of the Universe via the
Friedmann equation, and in turn responds to the expansion via their equations
of state: radiation dilutes as a−4, matter dilutes as a−3 the dark energy density
remains constant (assuming that dark energy is Einstein’s cosmological constant)
where a is the scalefactor of the Universe (Carroll, 2004).

Since matter and dark energy dilute at different rates during cosmic expansion,
these two components only have comparable densities for a brief interval during
cosmic history. Thus we are faced with the “cosmic coincidence problem”: Why,
just now, do the matter and dark energy densities happen to be of the same order
(Weinberg, 1989; Carroll, 2001b)? Ad-hoc dynamic dark energy (DDE) models
have been designed to solve the cosmic coincidence problem by arranging that
the dark energy density is similar to the matter density for significant fractions
of the age of the Universe.

Whether or not there is a coincidence problem depends on the range of times
during which the Universe may be observed. In Chapter 2, we quantify the sever-
ity of the coincidence problem under ΛCDM by using the temporal distribution
of terrestrial planets as a basis for the probable times of observation.
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In Chapter 3 we generalize this approach to quantify the severity of the coincid-
ence problem for all models of dark energy (using a standard parameterization).
The two possible outcomes of this line of investigation are both valuable. One the
one hand finding a significant coincidence problem for otherwise observationally
allowed dark energy models would rule them out, complementing observational
constraints on dark energy. On the other hand, finding that the coincidence
problem vanishes for all observationally allowed models would remove the
cosmic coincidence problem as a factor motivating dark energy models.

1.3. Searching for Life Tracers Amongst the Solar
Properties

If the origin and evolution of terrestrial-planet-bound observers depend on
anomalous properties of the planet’s host star, then the stars that host such
observers (including the Sun) are anthropically selected to have those properties.

Gonzalez (1999a,b) found that the Sun was more massive than ∼ 91% of stars,
and suggested that this may be explained if observers may develop preferentially
around very massive stars. A star’s mass determines, in large part, its lifetime,
luminosity, temperature and the location of the terrestrial habitable zone, all
of which may influence the probability of that star hosting observers. But the
statistical significance of this “anomalous” mass depends on the number of other
solar properties, also plausibly related to life, from which mass was selected.
Thus while Gonzalez’s proposition is plausible, it is unclear how strongly it is
supported by the data.

In Chapter 4 of this thesis we compare the Sun to representative samples of
stars in 11 independent parameters plausibly related to life (including mass),
with the aim of quantifying the overall typicality of the Sun and potentially
identifying statistically significant anomalous properties - potential tracers of life
in the Universe.

1.4. The Entropy of the Present and Future Universe

One feature that we can count on as being important to all life in the Universe
is the availability of free energy. Indeed we can only be sure of this because all
irreversible processes in the Universe consume free energy and contribute to the
increasing total entropy of the Universe.
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The current entropy of the observable Universe was estimated by Frampton et al.
(2008) to be ∼ 10102 k of a maximum possible value of ∼ 10123 k. The current
entropy of the observable Universe is dominated by the entropy in supermassive
black holes at the centers of galaxies, followed distantly by the cosmic microwave
background, neutrino background and other components.

If the entropy of the Universe reaches a value from which it could not be further
increased, then all dissipative processes would cease. The idea that the future of
the universe could end in such a state of thermodynamic equilibrium (a so-called
heat death) was written about by Thomson (1852), and later revived within the
context of an expanding Universe by Eddington (1931). Scientific and popular
science literature over the past three decades is ambiguous about whether or
not there will be a heat death, and if so, in what form.

In Chapter 5 we present an improved budget of the entropy of the observable
Universe using new measurements of the supermassive black hole mass function.
In Chapter 6 we compare the growing entropy of the Universe to upper bounds
that have been proposed, and draw conclusions about the future heat death.

1.5. About the Papers Presented in this Thesis

Chapter 2 was published as Lineweaver and Egan (2007). The text was co-
written with Charles Lineweaver, who is also to be credited for the original idea.
However, the work presented in the paper is predominantly mine: details of the
method, quantitative analyses, the preparation of all figures. For these reasons,
and with Dr. Lineweaver’s endorsement, it has been included here verbatim.

Chapter 3 is my own and was published as Egan and Lineweaver (2008).

In Chapter 4 I describe work published in Robles et al. (2008b), Robles et al.
(2008a) and the erratum, Robles et al. (2008c). I was a co-author of this work,
which was lead by Jose Robles, and I contributed in part to the collection of data
(age; see figure 4.2), data analysis (advice on, and implementation of statistical,
methods, as well as coding other parts of the analysis pipeline), interpretation
and presentation of the results (contributing to figures and published articles).
This chapter summarizes the main results paper, Robles et al. (2008b), in words
that are my own. The figures are taken, with permission, from Robles et al.
(2008b).

Chapter 5 is my own and has been submitted for publication to ApJ as Egan
and Lineweaver (2010a).
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Chapter 6 is my own and will contribute towards an article currently in prepara-
tion, which we refer to as Egan and Lineweaver (2010b).

Appendix A has been published as Lineweaver and Egan (2008). The text,
and most of the work presented in that paper is that of my supervisor. My
contributions include the contribution of the preparation of Figure A.4. The
paper is included in the appendix of this thesis as it is referred to several times,
and motivates the work presented in Chapters 5 and 6.
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CHAPTER 2

THE COSMIC COINCIDENCE AS A
TEMPORAL SELECTION EFFECT

PRODUCED BY THE AGE
DISTRIBUTION OF TERRESTRIAL

PLANETS IN THE UNIVERSE

Late at night, stars shining bright
on me, down by the sea.

And when I see them in the sky
constantly I’m asking why

I was stranded here.
I wish I could be out in space.

- S.P.O.C.K, “Out in Space”
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2.1. Is the Cosmic Coincidence Remarkable or Insig-
nificant?

2.1.1. Dicke’s argument

Dirac (1937) pointed out the near equality of several large fundamental dimen-
sionless numbers of the order 1040. One of these large numbers varied with
time since it depended on the age of the Universe. Thus there was a limited
time during which this near equality would hold. Under the assumption that
observers could exist at any time during the history of the Universe, this large
number coincidence could not be explained in the standard cosmology. This
problem motivated Dirac (1938) and Jordan (1955) to construct an ad hoc new
cosmology. Alternatively, Dicke (1961) proposed that our observations of the Uni-
verse could only be made during a time interval after carbon had been produced
in the Universe and before the last stars stop shining. Dicke concluded that this
temporal observational selection effect – even one so loosely delimited – could
explain Dirac’s large number coincidence without invoking a new cosmology.

Here, we construct a similar argument to address the cosmic coincidence: Why
just now do we find ourselves in the relatively brief interval during which
Ωm ∼ ΩΛ. The temporal constraints on observers that we present are more
empirical and specific than those used in Dicke’s analysis, but the reasoning is
similar. Our conclusion is also similar: a temporal observational selection effect
can explain the apparent cosmic coincidence. That is, given the evolution of ΩΛ

and Ωm in our Universe, most observers in our Universe who have emerged on
terrestrial planets will find ΩΛ ∼ Ωm. Rather than being an unusual coincidence,
it is what one should expect.

There are two distinct problems associated with the cosmological constant
(Weinberg, 2000a; Garriga and Vilenkin, 2001; Steinhardt, 2003). One is the
coincidence problem that we address here. The other is the smallness problem
and has to do with the observed energy density of the vacuum, ρΛ. Why is
ρΛ so small compared to the ∼ 10120 times larger value predicted by particle
physics? Anthropic solutions to this problem invoke a multiverse and argue that
galaxies would not form and there would be no life in a Universe, if ρΛ were
larger than ∼ 100 times its observed value (Weinberg, 1987; Martel et al., 1998;
Garriga and Vilenkin, 2001; Pogosian and Vilenkin, 2007). Such explanations for
the smallness of ρΛ do not explain the temporal coincidence between the time
of our observation and the time of the near-equality of Ωm and ΩΛ. Here we
address this temporal coincidence in our Universe, not the smallness problem in
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Figure 2.1 The time dependence of the densities of the major components of the Universe.
Given the observed Hubble constant, Ho and energy densities in the Universe today, Ωro , Ωmo ,
ΩΛo (radiation, matter and cosmological constant), we use the Friedmann equation to plot the
temporal evolution of the components of the Universe in g/cm3 (top panel), or normalized
to the time-dependent critical density ρcrit =

3H(t)2

8πG (bottom panel). We assume an epoch
of inflation at ∼ 10−35 seconds after the big bang and a false vacuum energy density ρΛinf

between the Planck scale and tGUT. See Table 2.1 and Appendix A for details.
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a multiverse.

2.1.2. Evolution of the Energy Densities

Given the currently observed values for Ho and the energy densities Ωro , Ωmo

and ΩΛo in the Universe (Spergel et al., 2006; Seljak et al., 2006), the Friedmann
equation tells us the evolution of the scale factor a, and the evolution of these
energy densities. These are plotted in Fig. 2.1. The history of the Universe can be
divided chronologically into four distinct periods each dominated by a different
form of energy: initially the false vacuum energy of inflation dominates, then
radiation, then matter, and finally vacuum energy. Currently the Universe is
making the transition from matter domination to vacuum energy domination.
In an expanding Universe, with an initial condition Ωm > ΩΛ > 0, there will
be some epoch in which Ωm ∼ ΩΛ, since ρm is decreasing as ∝ 1/a3 while ρΛ is
a constant (see top panel of Fig. 2.1 and Appendix A). Figure 2.1 also shows
that the transition from matter domination to vacuum energy domination is
occurring now. When we view this transition in the context of the time evolution
of the Universe (Fig. 2.2) we are presented with the cosmic coincidence problem:
Why just now do we find ourselves at the relatively brief interval during which
this transition happens? Carroll (2001b,a) and Dodelson et al. (2000) find this
coincidence to be a remarkable result that is crucial to understand. The cosmic
coincidence problem is often regarded as an important unsolved problem whose
solution may help unravel the nature of dark energy (Turner 2001; Carroll 2001a).
The coincidence problem is one of the main motivations for the tracker potentials
of quintessence models (Caldwell et al., 1998; Steinhardt et al., 1999; Zlatev et al.,
1999; Wang et al., 2000; Dodelson et al., 2000; Armendariz-Picon et al., 2001; Guo
and Zhang, 2005). In these models the cosmological constant is replaced by a
more generic form of dark energy in which Ωm and ΩΛ are in near-equality for
extended periods of time. It is not clear that these models successfully explain
the coincidence without fine-tuning (see Weinberg 2000a; Bludman 2004).

The interpretation of the observation Ωmo ∼ ΩΛo as a remarkable coincidence in
need of explanation depends on some assumptions that we quantify to determine
how surprising this apparent coincidence is. We begin this quantification by
introducing a time-dependent proximity parameter,

r = min
[
ΩΛ

Ωm
,
Ωm

ΩΛ

]
(2.1)

which is equal to one when Ωm = ΩΛ and is close to zero when Ωm >> ΩΛ or
Ωm << ΩΛ. The current value is ro ≈ 0.4. In Figure 2.2 we plot r as a function
of log(scale factor) in the upper panel and as a function of log(time) in the
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lower panel. These logarithmic axes allow a large dynamic range that makes
our existence at a time when r ∼ 1, appear to be an unlikely coincidence. This
appearance depends on the implicit assumption that we could make cosmological
observations at any time with equal likelihood. More specifically, the implicit
assumption is that the a priori probability distribution Pobs, of the times we could
have made our observations, is uniform in log t, or log a, over the interval shown.

Our ability to quantify the significance of the coincidence depends on whether
we assume that Pobs is uniform in time, log(time), scale factor or log(scale
factor). That is, our result depends on whether we assume: Pobs(t) = constant,
Pobs(log t) = constant, Pobs(a) = constant or Pobs(log a) = constant. These are the
most common possibilities, but there are others. For a discussion of the relative
merits of log and linear time scales and implicit uniform priors see Section 2.3.3
and Jaynes (1968).

In Fig. 2.3 we plot r(t) on an axis linear in time where the implicit assumption is
that the a priori probability distribution of our existence is uniform in t over the
intervals [0, 100] Gyr (top panel) and [0, 13.8] Gyr (bottom panel). The bottom
panel shows that the observation r > 0.4 could have been made anytime during
the past 7.8 Gyr. Thus, our current observation that ro ≈ 0.4, does not appear to
be a remarkable coincidence. Whether this most recent 7.8 Gyr period is seen as
“brief” (in which case there is an unlikely coincidence in need of explanation) or
“long” (in which case there is no coincidence to explain) depends on whether we
view the issue in log time (Fig. 2.2) or linear time (Fig. 2.3).

A large dynamic range is necessary to present the fundamental changes that
occurred in the very early Universe, e.g., the transitions at the Planck time,
inflation, baryogenesis, nucleosynthesis, recombination and the formation of the
first stars. Thus a logarithmic time axis is often preferred by early Universe
cosmologists because it seems obvious, from the point of view of fundamental
physics, that the cosmological clock ticks logarithmically. This defensible view
and the associated logarithmic axis gives the impression that there is a coincidence
in need of an explanation. The linear time axis gives a somewhat different
impression. Evidently, deciding whether a coincidence is of some significance
or only an accident is not easy (Peebles and Vilenkin, 1999). We conclude that
although the importance of the cosmic coincidence problem is subjective, it is
important enough to merit the analysis we perform here.

The interpretation of the observation Ωmo ∼ ΩΛo as a coincidence in need of
explanation depends on the a priori (not necessarily uniform) probability dis-
tribution of our existence. That is, it depends on when cosmological observers
can exist. We propose that the cosmic coincidence problem can be more con-
structively evaluated by replacing these uninformed uniform priors with the
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Figure 2.2 Plot of the proximity factor r (see Eq. 2.1). When the matter and vacuum energy
densities of the Universe are the same, Ωm = ΩΛ, we have r = 1. We currently observe
Ωmo ∼ ΩΛo and thus, r ∼ 1. Our existence now when r ∼ 1 appears to be an unlikely cosmic
coincidence when the x axis is logarithmic in the scale factor (top panel) or logarithmic in
time (bottom panel). In the top panel, following Carroll (2001b), we have chosen a range
of scale factors with “Now” midway between the scale factor at the Planck time and the
scale factor at the inverse Planck time [aPlanck < a < a−1

Planck]. The brief epoch shown in grey
between the thin vertical lines is the epoch during which r > ro (where ro ≈ 0.4 is the currently
observed value). In the bottom panel the range shown on the x axis is [tPlanck < t < 1022]
seconds. The Planck time and Planck scale provide reasonably objective lower time limits.
The upper limits are somewhat arbitrary but contribute to the impression that r ≈ 0.4 ∼ 1 is
an unlikely coincidence.
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Figure 2.3 Plot of the proximity factor r, as in the previous figure, but plotted here with a
linear rather than a logarithmic time axis. The condition r > ro ≈ 0.4 does not seem as unlikely
as in the previous figure. The range of time plotted also affects this appearance; with the
[0, 100] Gyr range of the top panel, the time interval highlighted in grey where r > ro, appears
narrow and relatively unlikely. In contrast, the [0, 13.8] Gyr range of the bottom panel seems
to remove the appearance of r > ro being an unlikely coincidence in need of explanation;
for the first ∼ 6 Gyrs we have r < ro while in the subsequent 7.8 Gyr we have r > ro. How
can r > ro be an unlikely coincidence when it has been true for most of the history of the
Universe?
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more realistic assumption that observers capable of measuring cosmological
parameters are dependent on the emergence of high density regions of the
Universe called terrestrial planets, which require non-trivial amounts of time to
form – and that once these planets are in place, the observers themselves require
non-trivial amounts of time to evolve.

In this paper we use the age distribution of terrestrial planets estimated by
Lineweaver (2001) to constrain when in the history of the Universe, observers
on terrestrial planets can exist. In Section 2.2, we briefly describe this age
distribution (Fig. 2.4) and show how it limits the existence of such observers to
an interval in which Ωm ∼ ΩΛ (Fig. 2.5). Using this age distribution as a temporal
selection function, we compute the probability of an observer on a terrestrial
planet observing r ≥ ro (Fig. 2.6). In Section 2.3 we discuss the robustness of our
result and find (Fig. 2.7) that this result is relatively robust if the time it takes an
observer to evolve on a terrestrial planet is less than ∼ 10 Gyr. In Section 2.4 we
discuss and summarize our results, and compare it to previous work to resolve
the cosmic coincidence problem (Garriga and Vilenkin, 2000; Bludman and Roos,
2001).

2.2. How We Compute the Probability of Observing
Ωm ∼ ΩΛ

2.2.1. The Age Distribution of Terrestrial Planets and New Ob-
servers

The mass histogram of detected extrasolar planets peaks at low masses: dN/dM ∝
M−1.7, suggesting that low mass planets are abundant (Lineweaver and Grether,
2003). Terrestrial planet formation may be a common feature of star formation
(Wetherill 1996; Chyba 1999; Ida and Lin 2005). Whether terrestrial planets
are common or rare, they will have an age distribution proportional to the
star formation rate – modified by the fact that in the first ∼ 2 billion years of
star formation, metallicities are so low that the material for terrestrial planet
formation will not be readily available. Using these considerations, Lineweaver
(2001) estimated the age distribution of terrestrial planets – how many Earths are
produced by the Universe per year, per Mpc3 (Figure 2.4). If life emerges rapidly
on terrestrial planets (Lineweaver and Davis, 2002) then this age distribution
is the age distribution of biogenesis in the Universe. However, we are not just
interested in any life; we would like to know the distribution in time of when
independent observers first emerge and are able to measure Ωm and ΩΛ, as we
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are able to do now. If life originates and evolves preferentially on terrestrial
planets, then the Lineweaver (2001) estimate of the age distribution of terrestrial
planets is an a priori input which can guide our expectations of when we (as
members of a hypothetical group of terrestrial-planet-bound observers) could
have been present in the Universe. It takes time (if it happens at all) for life
to emerge on a new terrestrial planet and evolve into cosmologists who can
observe Ωm and ΩΛ. Therefore, to obtain the age distribution of new independent
observers able to measure the composition of the Universe for the first time, we
need to shift the age distribution of terrestrial planets by some characteristic
time, ∆tobs required for observers to evolve. On Earth, it took ∆tobs ∼ 4 Gyr for
this to happen. Whether this is characteristic of life elsewhere in the Universe
is uncertain (Carter 1983; Lineweaver and Davis 2003). For our initial analysis
we use ∆tobs = 4 Gyr as a nominal time to evolve observers. In Section 2.3.1
we allow ∆tobs to vary from 0-12 Gyr to see how sensitive our result is to these
variations. Fig. 2.4 shows the age distribution of terrestrial planet formation in
the Universe shifted by ∆tobs = 4 Gyr. This curve, labeled “Pobs” is a crude prior
for the temporal selection effect of when independent observers can first measure
r. Thus, if the evolution of biological equipment capable of doing cosmology
takes about ∆tobs ∼ 4 Gyr, the “Pobs” in Fig. 2.4 shows the age distribution of
the first cosmologists on terrestrial planets able to look at the Universe and
determine the overall energy budget, just as we have recently been able to do.

2.2.2. The Probability of Observing Ωm ∼ ΩΛ.

In Fig. 2.5 we zoom into the portion of Fig. 2.1 containing the relatively narrow
window of time in which Ωm ∼ ΩΛ. We plot r(t) to show where r ∼ 1 and we
also plot the age distribution of planets and the age distribution of recently
emerged cosmologists from Fig. 2.4. The white area under the thick Pobs(t) curve
provides an estimate of the time distribution of new observers in the Universe.
We interpret Pobs(t) as the probability distribution of the times at which new,
independent observers are able to measure r for the first time.

Lineweaver (2001) estimated that the Earth is relatively young compared to other
terrestrial planets in the Universe. It follows under the simple assumptions of
our analysis that most terrestrial-planet-bound observers will emerge earlier than
we have. We compute the fraction f of observers who have emerged earlier than
we have,

f =

∫ to

0
Pobs(t) dt∫

∞

0
Pobs(t) dt

≈ 68% (2.2)
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and find that 68% emerge earlier while 32% emerge later. These numbers are
indicated in Fig. 2.5.

2.2.3. Converting Pobs(t) to Pobs(r)

We have an estimate of the distribution in time of observers, Pobs(t), and we
have the proximity parameter r(t). We can then convert these to a probability
Pobs(r), of observed values of r. That is, we change variables and convert the
t−dependent probability to an r−dependent probability: Pobs(t) → Pobs(r). We
want the probability distribution of the r values first observed by new observers
in the Universe. Let the probability of observing r in the interval dr be Pobs(r)dr.
This is equal to the probability of observing t in the interval dt, which is Pobs(t)dt

Thus,
Pobs(r) dr = Pobs(t) dt (2.3)

or equivalently

Pobs(r) =
Pobs(t)
dr/dt

(2.4)

where Pobs(t) = PFR(t−∆tobs) is the temporally shifted age distribution of terrestrial
planets and dr/dt is the slope of r(t). Both are shown in Fig. 2.5. The distribution
Pobs(r) is shown in Fig. 2.6 along with the upper and lower confidence limits
on Pobs(r) obtained by inserting the upper and lower confidence limits of Pobs(t)
(denoted “P+” and “P−” in Fig. 2.4), into Eq. 2.4 in place of Pobs(t).

The probability of observing r > ro is,

P(r > ro) =

∫ 1

ro

Pobs(r) dr =

∫ to

t′
Pobs(t) dt ≈ 68% (2.5)

where t′ is the time in the past when r was equal to its present value, i.e.,
r(t′) = r(to) = ro ≈ 0.4. We have t′ = 6 Gyr and to = 13.8 Gyr (see bottom panel
of Fig. 2.3). This integral is shown graphically in Fig. 2.6 as the hatched area
underneath the “Pobs(r)” curve, between r = ro and r = 1. We interpret this
as follows: of all observers that have emerged on terrestrial planets, 68% will
emerge when r > ro and thus will find r > ro. The 68% from Eq. 2.2 is only the
same as the 68% from Eq. 2.5 because all observers who emerge earlier than we
did, did so more recently than 7.8 billion years ago and thus, observe r > ro (Fig.
2.5).

We obtain estimates of the uncertainty on this 68% estimate by computing
analogous integrals underneath the curves labeled P+ and P− in Fig. 2.6. These
yield 82% and 59% respectively. Thus, under the assumptions made here, 68+14

−10%
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of the observers in the Universe will find ΩΛ and Ωm even closer to each other than
we do. This suggests that a temporal selection effect due to the constraints on the
emergence of observers on terrestrial planets provides a plausible solution to the
cosmic coincidence problem. If observers in our Universe evolve predominantly
on Earth-like planets (see the “principle of mediocrity” in Vilenkin (1995b)), we
should not be surprised to find ourselves on an Earth-like planet and we should
not be surprised to find ΩΛo ∼ Ωmo .
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Figure 2.4 The terrestrial planet formation rate PFR(t), derived in Lineweaver (2001) is an
estimate of the age distribution of terrestrial planets in the Universe and is shown here as a
thin solid line. Estimated uncertainty is given by the thin dashed lines. To allow time for the
evolution of observers on terrestrial planets, we shift this distribution by ∆tobs to obtain an
estimate of the age distribution of observers: Pobs(t) = PFR(t−∆tobs) (thick solid line). The grey
band represents the error estimate on Pobs(t) which is the shifted error estimates on PFR(t).
In the case shown here ∆tobs = 4 Gyr, which is how long it took life on Earth to emerge,
evolve and be able to measure the composition of the Universe. To obtain the numerical
values on the y axis, we have followed Lineweaver (2001) and assumed that one out of one
hundred stars is orbited by a terrestrial planet. We have smoothly extrapolated the PFR(t) of
Lineweaver (2001) into the future. This time dependence and our subsequent analysis does
not depend on whether the probability for terrestrial planets to produce observers is high or
low.
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Figure 2.5 Zoom-in of the portion of Fig. 2.1 between 1 and 100 billion years after the big
bang, containing the relatively narrow window of time in which Ωm ∼ ΩΛ. The 99 Gyr time
interval displayed here is indicated in Fig. 2.1 by the small grey rectangle above the “Now”
label. The proximity parameter r(t) (Eq. 2.1, Figs. 2.2 & 2.3) is superimposed. The thin solid
line shows the age distribution of terrestrial planets in the Universe while the thick solid
line is the lateral displacement of this distribution by ∆tobs = 4 Gyr. These distributions were
presented in Fig. 2.4, but here the time axis is logarithmic. We interpret Pobs as the frequency
distribution of new observers able to measure Ωm and ΩΛ for the first time. Since r(t) peaks
at about the same time as Pobs(t), large values of r will be observed more often than small
values.
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Figure 2.6 Probability of new observers on terrestrial planets observing a given r (Eq. 2.4).
Given our estimate of the age distribution of new cosmologists in the Universe Pobs(t), the
probability of observing Ωm and ΩΛ as close together as they are, or closer, is the integral
given in Eq. (2.5), shown here as the hashed area labeled 68%. The dashed lines labeled P+

and P− are from replacing Pobs(t) in Eq. 2.4 with the curves labeled P+ and P− in Fig. 2.4.
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2.3. How Robust is this 68% Result?

2.3.1. Dependence on the timescale for the evolution of observ-
ers

A necessary delay, required for the biological evolution of observing equipment
– e.g. brains, eyes, telescopes, makes the observation of recent biogenesis unob-
servable (Lineweaver and Davis, 2002, 2003). That is, no observer in the Universe
can wake up to observerhood and find that their planet is only a few hours old.
Thus, the timescale for the evolution of observers, ∆tobs > 0.

Our 68+14
−10% result was calculated under the assumption that evolution from a

new terrestrial planet to an observer takes ∆tobs ∼ 4 Gyr. To determine how
robust our result is to variations in ∆tobs, we perform the analysis of Sec. 2.2 for
0 < ∆tobs < 12 Gyr. The results are shown in Fig. 2.7. Our 68+14

−10% result is the
data point plotted at ∆tobs = 4 Gyr. If life takes ∼ 0 Gyr to evolve to observerhood,
once a terrestrial planet is in place, Pobs(t) ≈ PFR(t) and 55% of new cosmologists
would observe an r value larger than the ro ≈ 0.4 that we actually observe today.
If observers typically take twice as long as we did to evolve (∆tobs ∼ 8 Gyr), there
is still a large chance (∼ 30%) of observing r > ro. If ∆tobs > 11 Gyr, Pobs(t) in Fig.
2.5 peaks substantially after r(t) peaks, and the percentage of cosmologists who
see r > ro, is close to zero (Eq. 2.5). Thus, if the characteristic time it takes for life
to emerge and evolve into cosmologists is ∆tobs

<
∼ 10 Gyr, our analysis provides a

plausible solution to the cosmic coincidence problem.

The Sun is more massive than 94% of all stars. Therefore 94% of stars live
longer than the t� ≈ 10 Gyr main sequence lifetime of the Sun. This is mildly
anomalous and it is plausible that the Sun’s mass has been anthropically selected.
For example, perhaps stars as massive as the Sun are needed to provide the UV
photons to jump start and energize the molecular evolution that leads to life. If
so, then ∼ 10 Gyr is a rough upper limit to the amount of time a terrestrial planet
with simple life has to produce observers. Even if the characteristic time for life
to evolve into observers is much longer than 10 Gyr, as concluded by Carter
(1983), this UV requirement that life-hosting stars have main sequence lifetimes
<
∼ 10 Gyr would lead to the extinction of most extraterrestrial life before it can
evolve into observers. This would lead to observers waking to observerhood to
find the age of their planet to be a large fraction of the main sequence lifetime
of their star; the time they took to evolve would satisfy ∆tobs

<
∼ 10 Gyr, and they

would observe that r ∼ 1 and that other observers are very rare. Such is our
situation.
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If we assume that we are typical observers (Vilenkin, 1995a,b, 1996a,b) and
that the coincidence problem must be resolved by an observer selection effect
(Bostrom, 2002), then we can conclude that the typical time it takes observers to
evolve on terrestrial planets is less than 10 Gyr (∆tobs < 10 Gyr).

2.3.2. Dependence on the age distribution of terrestrial planets

The Pobs(t) used here (Fig. 2.5) is based on the star formation rate (SFR) computed
in Lineweaver (2001). There is general agreement that the SFR has been declining
since redshifts z ∼ 2. Current debate centers around whether that decline has
only been since z ∼ 2 or whether the SFR has been declining from a much higher
redshift (Lanzetta et al. 2002; Hopkins 2006; Nagamine et al. 2006; Thompson
et al. 2006). Since Lineweaver (2001) assumed a relatively high value for the SFR
at redshifts above 2, this led to a relatively high estimate of the metallicity of
the Universe at z ∼ 2, which corresponds to a relatively short delay (∼ 2 Gyr)
between the big bang and the first terrestrial planets. For the purposes of this
analysis, the early-SFR-dependent uncertainty in the ∼ 2 Gyr delay is degenerate
with, but much smaller than, the uncertainty of ∆tobs. Thus the variations of
∆tobs discussed above subsume the SFR-dependent uncertainty in Pobs(t).

2.3.3. Dependence on Measure

In Figs. 2.2 & 2.3 we illustrated how the importance of the cosmic coincidence
depends on the range over which one assumes that the observation of r could
have occurred. This involved choosing the range ∆x shown on the x axis in Figs.
2.2 & 2.3. We also showed how the apparent significance of the coincidence
depended on how one expressed that range, i.e., logarithmic in Fig. 2.2 and
linear in Fig. 2.3. The coincidence seems most compelling when ∆x is the largest
and the problem is presented on a logarithmic x axis. This dependence is a
specific example of a “measure” problem (Aguirre and Tegmark 2005; Aguirre
et al. 2007).

The measure problem is illustrated in Fig. 2.8, where we plot four different
uniform distributions of observers on a linear time axis. In Panel a) Pobs(t) =

constant. That is, we assume that observers could find themselves anywhere
between trec = 380, 000 yr and 100 Gyr after the big bang, with uniform probability
(dark grey). In b), we make the different assumption that observers are distributed
uniformly in log(t) over the same range in time. This means for example that the
probability of finding yourself between 0.1 and 1 Gyr is the same as between 1
and 10 Gyr. We plot this as a function of linear time and find that the distribution
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of observers (dark grey) is highest towards earlier times.

To quantify and explore these dependencies further, in Table 2.2, we take the
duration when r > ro (call this interval ∆xr) and divide it by various larger ranges
∆x (a range of time or scale factor). Thus, when the probability P(r > ro) = ∆xr

∆x
is << 1, there is a low probability that one would find oneself in the interval
∆xr and the cosmic coincidence is compelling. However, when P(r > ro) ∼ 1 the
coincidence is not significant.

In the four panels a,b,c and d of Fig. 2.8 the probability of us observing r ≥ ro

(finding ourselves in the light grey area) is respectively 8%, 7%, 0.2% and 6%.
These values are given in the first row of Table 2.2 along with analogous values
when 11 other ranges for ∆x are considered. Probabilities corresponding to the
four panels of Figs. 2.2 & 2.3 are shown in bold in Table 2.2. Our conclusion
is that this simple ratio method of measuring the significance of a coincidence
yields results that can vary by many orders of magnitude depending on the
range (∆x) and measure (e.g. linear or logarithmic) chosen. The use of the
non-uniform Pobs(t) shown in Fig. 2.4 is not subject to these ambiguities in the
choice of range and measure.
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Figure 2.7 Percentage of cosmologists who see r > ro as a function of the time ∆tobs, it takes
observers to evolve on a terrestrial planet. Since we have only vague notions about how long
it takes observers to evolve on a planet, we vary ∆tobs between 0 and 12 billion years and
show how the probability P(r > ro) of observing r > ro (Eq. 2.5) varies as a function of ∆tobs.
The 68+14

−10% point plotted is the result from Fig. 2.6 where ∆tobs = 4 Gyr. If ∆tobs = 0, we use
the thin solid line in Fig. 2.5 as Pobs(t) rather than the thick solid line and we obtain 55%.
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Figure 2.8 The expected observed value of r depends strongly on the assumed distribution of
observers over time t. This figure demonstrates a variety of uniform observer distributions
Pobs which, if used, result in the cosmic coincidence problem that the observed value of r is
unexpectedly high. The Pobs that are functions of log(a) or log(t) have been normalized to the
interval trec to 100 Gyr. Panel a) is the same as the top panel of Fig. 2.3. The probabilities
that an observer would fall within the vertical light grey band (r > ro) in Panels a,b,c and d
are 8%, 7%, 0.2% and 6% respectively, and are given in the first row of Table 2.2.
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2.4. Discussion & Summary

Anthropic arguments to resolve the coincidence problem include Garriga and
Vilenkin (2000) and Bludman and Roos (2001). Both use a semi-analytical
formalism (Gunn and Gott 1972; Press and Schechter 1974; Martel et al. 1998) to
compute the number density of objects that collapse into large galaxies. This
is then used as a measure of the number density of intelligent observers. Our
work complements these semi-analytic models by using observations of the star
formation rate to constrain the possible times of observation. Our work also
extends this previous work by including the effect of ∆tobs, the time it takes
observers to evolve on terrestrial planets. This inclusion puts an important limit
on the validity of anthropic solutions to the coincidence problem.

Garriga and Vilenkin (2000) is probably the work most similar to ours. They
take ρΛ as a random variable in a multiverse model with a prior probability
distribution. For a wide range of ρΛ (prescribed by a prior based on inflation
theory) they find approximate equality between the time of galaxy formation tG,
the time when Λ starts to dominate the energy density of the Universe tΛ and
now to. That is, they find that, within one order of magnitude, tG ∼ tΛ ∼ to. Their
analysis is more generic but approximate in that it addresses the coincidence
for a variety of values of ρΛ to an order of magnitude precision. Our analysis is
more specific and empirical in that we condition on our Universe and use the
Lineweaver (2001) star-formation-rate-based estimate of the age distribution of
terrestrial planets to reach our main result (68%).

To compare our result to that of Garriga and Vilenkin (2000), we limit their ana-
lysis to the ρΛ observed in our Universe (ρΛ = 6.7× 10−30g/cm3) and differentiate
their cumulative number of galaxies which have assembled up to a given time
(their Eq. 9). We find a broad time-dependent distribution for galaxy formation
which is the analog of our more empirical and narrower (by a factor of 2 or 3)
Pobs(t).

We have made the most specific anthropic explanation of the cosmic coincidence
using the age distribution of terrestrial planets in our Universe and found this
explanation fairly robust to the largely uncertain time it takes observers to evolve.
Our main result is an understanding of the cosmic coincidence as a temporal
selection effect if observers emerge preferentially on terrestrial planets in a
characteristic time ∆tobs < 10 Gyr. Under these plausible conditions, we, and any
observers in the Universe who have evolved on terrestrial planets, should not be
surprised to find Ωmo ∼ ΩΛo .
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Appendix A: Evolution of Densities

Recent cosmological observations have led to the new standard ΛCDM model
in which the density parameters of radiation, matter and vacuum energy are
currently observed to be Ωro ≈ 4.9 ± 0.5 × 10−5, Ωmo ≈ 0.26 ± 0.03 and ΩΛo ≈

0.74± 0.03 respectively and Hubble’s constant is Ho = 71± 3 kms−1Mpc−1 (Spergel
et al., 2006; Seljak et al., 2006).

The energy densities in relativistic particles (“radiation” i.e., photons, neutrinos,
hot dark matter), non-relativistic particles (“matter” i.e., baryons,cold dark matter)
and in vacuum energy scale differently (Peacock, 1999),

ρi ∝ a−3(wi+1). (2.6)

Where the different equations of state are, ρi = wi p where wradiation = 1/3,
wmatter = 0 and wΛ = −1 (Linder, 1997). That is, as the Universe expands, these
different forms of energy density dilute at different rates.

ρr ∝ a−4 (2.7)
ρm ∝ a−3 (2.8)
ρΛ ∝ a0 (2.9)

Given the currently observed values for Ωr, Ωm and ΩΛ, the Friedmann equation
for a standard flat cosmology tells us the evolution of the scale factor of the
Universe, and the history of the energy densities:( ȧ

a

)2

=
8πG

3
(ρr + ρm + ρΛ) (2.10)

=
8πG

3
(ρroa

−4 + ρmoa
−3 + ρΛa0) (2.11)

= (Ωroa
−4 + Ωmoa

−3 + ΩΛoa
0) (2.12)

where we have ρcrit = 3H(t)2

8πG and Ωi =
ρi
ρcrit

. The upper panel of Fig. 2.1 illustrates
these different dependencies on scale factor and time in terms of densities while
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the lower panel shows the corresponding normalized density parameters. A
false vacuum energy ρΛin f is assumed between the Planck scale and the GUT
scale. In constructing this density plot and setting a value for ΩΛin f we have
used the constraint that at the GUT scale, all the energy densities add up to ρΛin f

which remains constant at earlier times.

Appendix B: Tables

Event Symbol Time after Big Bang
seconds Gyr

Planck time, beginning of time tPlanck 5.4 × 10−44 1.7 × 10−60

end of inflation, reheating, origin of matter, thermalization treheat [10−43, 10−33] [10−60, 10−50]
energy scale of Grand Unification Theories (GUT) tGUT 10−33 10−50

matter-anti-matter annihilation, baryogenesis tbaryogenesis [10−33, 10−12] [10−50, 10−29]
electromagnetic and weak nuclear forces diverge telectroweak 10−12 10−29

light atomic nuclei produced tBBN [100, 300] [3, 9] × 10−15

radiation-matter equality1 tr−m 8.9 × 1011 2.8 × 10−5

recombination1 (first chemistry) trec 1.2 × 1013 0.38 × 10−3

first thermal disequilibrium t1sttherm−dis 1.2 × 1013 0.38 × 10−3

first stars, Pop III, reionization1 t1ststars 1 × 1016 0.4
first terrestrial planets2 t1stEarths 8 × 1016 2.5
last time r had same value as today trnow 1.9 × 1017 6.1
formation of the Sun, Earth3 tSun,tEarth 2.9 × 1017 9.1
matter-Λ equality1 tm−Λ 3.0 × 1017 9.4
now to 4.4 × 1017 13.8
last stars die4 tlaststars 1022 106

protons decay4 tprotondecay 1045 1029

super massive black holes consume matter4 tblackholes 10107 1091

maximum entropy (no gradients to drive life)4 theatdeath 10207 10191

Table 2.1 Important Times in the History of the Universe. References:
(1) Spergel et al. 2006, http://map.gsfc.nasa.gov/
(2) Lineweaver 2001
(3) Allègre et al. 1995
(4) Adams and Laughlin 1997
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Range ∆x a P(r > ro) [%]
xmin xmax t log(t) a log(a)
trec 100 Gyr b 8 c 7 0.2 6
tPlanck tlaststars 8 × 10−4 0.6 d 10−104

10−3

tPlanck to 60 c 0.6 50 1
tPlanck t−1

Planck 30 0.3 30 0.5 d

tPlanck theatdeath 10−188 0.1 10−10189
10−188

trec tprotondecay 10−26 1 10−1027
10−26

trec tblackholes 10−88 0.4 10−1089
10−88

trec theatdeath 10−188 0.2 10−10189
10−188

t1ststars tlaststars 8 × 10−4 6 10−104
10−3

t1ststars tprotondecay 10−26 1 10−1027
10−26

t1ststars tblackholes 10−88 0.4 10−1089
10−88

t1ststars theatdeath 10−188 0.2 10−10189
10−188

Table 2.2 The probability P(r > ro) of observing r > ro assuming a uniform distribution of
observers Pobs in linear time, log(time), scale factor and log(scale factor) within the range ∆x
listed.
a See Table 1 for the times corresponding to columns 1 and 2.
b The four values in the top row correspond to Fig. 2.8.
c The two values shown in bold in the t column correspond to the two panels of Fig. 2.3.
d These values correspond to the two panels of Fig.2.2.
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CHAPTER 3

DARK ENERGY DYNAMICS
REQUIRED TO SOLVE THE

COSMIC COINCIDENCE

Tonight I have a date on Mars.
Tonight I’m gonna get real far.
I’ll be leaving Earth behind me.

- Encounter, “Date on Mars”

3.1. Introduction

In 1998, using supernovae Ia as standard candles, Riess et al. (1998) and Perlmutter
et al. (1999) revealed a recent and continuing epoch of cosmic acceleration
- strong evidence that Einstein’s cosmological constant Λ, or something else
with comparable negative pressure pde ∼ −ρde, currently dominates the energy
density of the universe (Lineweaver, 1998). Λ is usually interpreted as the energy
of zero-point quantum fluctuations in the vacuum (Zel’Dovich, 1967; Durrer
and Maartens, 2007) with a constant equation of state w ≡ pde/ρde = −1. This
necessary additional energy component, construed as Λ or otherwise, has become
generically known as “dark energy” (DE).
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A plethora of observations have been used to constrain the free parameters of
the new standard cosmological model, ΛCDM , in which Λ does play the role
of the dark energy. Hinshaw et al. Hinshaw (2006) find that the universe is
expanding at a rate of H0 = 71± 4 km/s/Mpc; that it is spatially flat and therefore
critically dense (Ωtot0 =

ρtot0

ρcrit0
= 8πG

3H2
0
ρtot0 = 1.01 ± 0.01); and that the total density is

comprised of contributions from vacuum energy (ΩΛ0 = 0.74 ± 0.02), cold dark
matter (CDM; ΩCDM0 = 0.22 ± 0.02), baryonic matter (Ωb0 = 0.044 ± 0.003) and
radiation (Ωr0 = 4.5 ± 0.2 × 10−5). Henceforth we will assume that the universe is
flat (Ωtot0 = 1) as predicted by inflation and supported by observations.

Two problems have been influential in moulding ideas about dark energy, spe-
cifically in driving interest in alternatives to ΛCDM . The first of these problems is
concerned with the smallness of the dark energy density (Zel’Dovich, 1967; Wein-
berg, 1989; Cohn, 1998). Despite representing more than 70% of the total energy
of the universe, the current dark energy density is ∼ 120 orders of magnitude
smaller than energy scales at the end of inflation (or ∼ 80 orders of magnitude
smaller than energy scales at the end of inflation if this occurred at the GUT
rather than Planck scale) (Weinberg, 1989). Dark energy candidates are thus
challenged to explain why the observed DE density is so small. The standard
idea, that the dark energy is the energy of zero-point quantum fluctuations in
the true vacuum, seems to offer no solution to this problem.

The second cosmological constant problem Weinberg (2000b); Carroll (2001a);
Steinhardt (2003) is concerned with the near coincidence between the current
cosmological matter density (ρm0 ≈ 0.26 × ρcrit0) and the dark energy density
(ρde0 ≈ 0.74 × ρcrit0). In the standard ΛCDM model, the cosmological window
during which these components have comparable density is short (just 1.5 e-folds
of the cosmological scalefactor a) since matter density dilutes as ρm ∝ a−3 while
vacuum density ρde is constant (Lineweaver and Egan, 2007). Thus, even if
one explains why the DE density is much less than the Planck density (the
smallness problem) one must explain why we happen to live during the time
when ρde ∼ ρm.

The likelihood of this coincidence depends on the range of times during which
we suppose we might have lived. In works addressing the smallness problem,
Weinberg (1987, 1989, 2000a) considered a multiverse consisting of a large number
of big bangs, each with a different value of ρde. There he asked, suppose that
we could have arisen in any one of these universes; What value of ρde should
we expect our universe to have? While Weinberg supposed we could have
arisen in another universe, we are simply supposing that we could have arisen
in another time. We ask, what time tobs, and corresponding densities ρde(tobs)
and ρm(tobs) should we expect to observe? Weinberg’s key realization was that

32



not every universe was equally probable: those with smaller ρde contain more
Milky-Way-like galaxies and are therefore more hospitable (Weinberg, 1987, 1989).
Subsequently, he, and other authors used the relative number of Milky-Way-
like galaxies to estimate the distribution of observers as a function of ρde, and
determined that our value of ρde was indeed likely (Efstathiou, 1995; Martel
et al., 1998; Pogosian and Vilenkin, 2007). Our value of ρde could have been
found to be unlikely and this would have ruled out the type of multiverse
being considered. Here we apply the same reasoning to the cosmic coincidence
problem. Our observerhood could not have happened at any time with equal
probability (Lineweaver and Egan, 2007). By estimating the temporal distribution
of observers we can determine whether the observation of ρde ∼ ρm was likely. If
we find ρde ∼ ρm to be unlikely while considering a particular DE model, that
will enable us to rule out that DE model.

In a previous paper (Lineweaver and Egan, 2007), we tested ΛCDM in this
way and found that ρde ∼ ρm is expected. In the present paper we apply this
test to dynamic dark energy models to see what dynamics is required to solve
the coincidence problem when the temporal distribution of observers is being
considered.

The smallness of the dark energy density has been anthropically explained in
multiverse models with the argument that in universes with much larger DE
components, DE driven acceleration starts earlier and precludes the formation
of galaxies and large scale structure. Such universes are probably devoid of
observers (Weinberg, 1987; Martel et al., 1998; Pogosian and Vilenkin, 2007). A
solution to the coincidence problem in this scenario was outlined by Garriga
et al. (1999) who showed that if ρde is low enough to allow galaxies to form, then
observers in those galaxies will observe r ∼ 1.

To quantify the time-dependent proximity of ρm and ρde, we define a proximity
parameter,

r ≡ min
[
ρde

ρm
,
ρm

ρde

]
, (3.1)

which ranges from r ≈ 0, when many orders of magnitude separate the two
densities, to r = 1, when the two densities are equal. The presently observed
value of this parameter is r0 =

ρm0

ρde0
≈ 0.35. In terms of r, the coincidence problem

is as follows. If we naively presume that the time of our observation tobs has
been drawn from a distribution of times Pt(t) spanning many decades of cosmic
scalefactor, we find that the expected proximity parameter is r ≈ 0 � 0.35. In
the top panel of Fig. 3.1 we use a naive distribution for tobs that is constant in
log(a) to illustrate how observing r as large as r0 ≈ 0.35 seems unexpected.

In Lineweaver and Egan (2007) we showed how the apparent severity of the
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coincidence problem strongly depends upon the distribution Pt(t) from which
tobs is hypothesized to have been drawn. Naive priors for tobs, such as the one
illustrated in the top panel of Fig. 3.1, lead to naive conclusions. Following the
reasoning of Weinberg (1987, 1989, 2000a) we interpret Pt(t) as the temporal
distribution of observers. The temporal and spatial distribution of observers has
been estimated using large (1011M

�
) galaxies (Weinberg, 1987; Efstathiou, 1995;

Martel et al., 1998; Garriga et al., 1999) and terrestrial planets (Lineweaver and
Egan, 2007) as tracers. The top panel of Fig. 3.1 shows the temporal distribution
of observers Pt(t) from Lineweaver and Egan (2007).

A possible extension of the concordance cosmological model that may explain
the observed smallness of ρde is the generalization of dark energy candidates
to include dynamic dark energy (DDE) models such as quintessence, phantom
dark energy, k-essence and Chaplygin gas. In these models the dark energy is
treated as a new matter field which is approximately homogenous, and evolves
as the universe expands. DDE evolution offers a mechanism for the decay of
ρde(t) from the expected Planck scales (1093 g/cm3) in the early universe (10−44 s)
to the small value we observe today (10−30 g/cm3). The light grey shade in the
bottom panel of Fig. 3.1 represents contemporary observational constraints on the
DDE density history. Many DDE models are designed to solve the coincidence
problem by having ρde(t) ∼ ρm(t) for a large fraction of the history/future of
the universe (Amendola, 2000a; Dodelson et al., 2000; Sahni and Wang, 2000;
Chimento et al., 2000; Zimdahl et al., 2001; Sahni, 2002; Chimento et al., 2003;
Ahmed et al., 2004; França and Rosenfeld, 2004; Mbonye, 2004; del Campo et al.,
2005; Guo and Zhang, 2005; Olivares et al., 2005; Pavón and Zimdahl, 2005;
Scherrer, 2005; Zhang, 2005; del Campo et al., 2006; França, 2006; Feng et al.,
2006; Nojiri and Odintsov, 2006; Amendola et al., 2006, 2007; Olivares et al., 2007;
Sassi and Bonometto, 2007). With ρde ∼ ρm for extended or repeated periods the
hope is to ensure that r ∼ 1 is expected.

Our main goal in this paper is to take into account the temporal distribution
of observers to determine when, and for how long, a DDE model must have
ρde ∼ ρm in order to solve the coincidence problem? Specifically, we extend
the work of Lineweaver and Egan (2007) to find out for which cosmologies
(in addition to ΛCDM ) the coincidence problem is solved when the temporal
distribution of observers is considered. In doing this we answer the question,
Does a dark energy model fitting contemporary constraints on the density ρde

and the equation of state parameters, necessarily solve the cosmic coincidence?
Both positive and negative answers have interesting consequences. An answer
in the affirmative will simplify considerations that go into DDE modeling: any
DDE model in agreement with current cosmological constraints has ρde ∼ ρm for
a significant fraction of observers. An answer in the negative would yield a new
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Figure 3.1 (Top) The history of the energy density of the universe according to standard
ΛCDM . The dotted line shows the energy density in radiation (photons, neutrinos and other
relativistic modes). The radiation density dilutes as a−4 as the universe expands. The dashed
line shows the density in ordinary non-relativistic matter, which dilutes as a−3. The thick
solid line shows the energy of the vacuum (the cosmological constant) which has remained
constant since the end of inflation. The thin solid peaked curve shows the proximity r of the
matter density to the vacuum energy density (see Eq. 3.1). The proximity r is only ∼ 1 for a
brief period in the log(a) history of the cosmos. Whether or not there is a coincidence problem
depends on the distribution Pt(t) for tobs. If one naively assumes that we could have observed
any epoch with equal probability (the light grey shade) then we should not expect to observe
r as large as we do. If, however, Pt(t) is based on an estimate of the temporal distribution of
observers (the dark grey shade) then r0 ≈ 0.35 is not surprising, and the coincidence problem
is solved under ΛCDM (Lineweaver and Egan, 2007). (Bottom) The dark energy density
history is modified in DDE models. Observational constraints on the dark energy density
history are represented by the light grey shade (details in Section 3.3).
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opportunity to constrain the DE equation of state parameters more strongly than
contemporary cosmological surveys.

A different coincidence problem arises when the time of observation is condi-
tioned on and the parameters of a model are allowed to slide. The tuning of
parameters and the necessity to include ad-hoc physics are large problems for
many current dark energy models. This paper does not address such issues,
and the interested reader is referred to Hebecker and Wetterich (2001), Bludman
(2004) and Linder (2006b). In the coincidence problem addressed here we let the
time of observation vary to see if r(tobs) ≥ 0.35 is unlikely according to the model.

In Section 3.2 we present several examples of DDE models used to solve the
coincidence problem. An overview of observational constraints on DDE is
given in Section 3.3. In Section 3.4 we estimate the temporal distribution of
observers. Our main analysis is presented in Section 3.5. Our main result -
that the coincidence problem is solved for all DDE models fitting observational
constraints - is illustrated in Fig. 3.7. Finally, in Section 3.6, we end with a
discussion of our results, their implications and potential caveats.

3.2. Dynamic Dark Energy Models in the Face of the
Cosmic Coincidence

Though it is beyond the scope of this article to provide a complete review
of DDE (see Copeland et al. (2006); Szydłowski et al. (2006)), here we give a
few representative examples in order to set the context and motivation of our
work. Fig. 3.2 illustrates density histories typical of tracker quintessence, tracking
oscillating energy, interacting quintessence, phantom dark energy, k-essence, and
Chaplygin gas. They are discussed in turn below.

3.2.1. Quintessence

In quintessence models the dark energy is interpreted as a homogenous scalar
field with Lagrangian density L(φ,X) = 1

2 φ̇
2
− V(φ) (Özer and Taha, 1987; Ratra

and Peebles, 1988; Ferreira and Joyce, 1998; Caldwell et al., 1998; Steinhardt et al.,
1999; Zlatev et al., 1999; Dalal et al., 2001). The evolution of the quintessence field
and of the cosmos depends on the postulated potential V(φ) of the field and on
any postulated interactions. In general, quintessence has a time-varying equation
of state w =

pde
ρde

=
φ̇2/2−V(φ)
φ̇2/2+V(φ) . Since the kinetic term φ̇2/2 cannot be negative, the
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Figure 3.2 The energy density history of the universe according to ΛCDM (panel a), and
seven DDE models selected from the literature (see text for references). In each panel the
radiation and matter densities are the dotted and dashed lines respectively. The DE density
is given by the thick black line. The proximity parameter r is given by the thin black line at
the base of each panel. Of the DDE models shown here, tracker quintessence and k-essence
(panels b, c and g) have r ∼ 1 for a small fraction of the life of the universe (whether the
abscissa is t, log(t), a, log(a), or any other of a large number of measures). On the other hand,
tracking oscillating energy, interacting quintessence, phantom DE and Chaplygin gas (panels
d, e, f and h) exhibit r ∼ 1 for a large fraction of the life of the universe. For the phantom
DE example (panel f) this is true in t, but not in a or log(a). In phantom models the future
universe grows super-exponentially to a = ∞ (a “big-rip”) shortly after matter-DE equality.
Thus the universe spends a large fraction of time with r ∼ 1, however this is is not seen in
log(a)-space. For each of the models in this figure, numerical values for free parameters were
chosen to crudely fit observational constraints and are given in Appendix 3.6.
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equation of state is restricted to values w ≥ −1. Moreover, if the potential V(φ)
is non-negative then w is also restricted to values w ≤ +1.

If the quintessence field only interacts gravitationally then energy density evolves
as δρde

ρde
= −3(w + 1) δa

a and the restrictions −1 ≤ w ≤ +1 mean ρde decays (but never
faster than a−6) or remains constant (but never increases).

Tracker Quintessence

Particular choices for V(φ) lead to interesting attractor solutions which can be
exploited to make ρde scale (“track”) sub-dominantly with ρr + ρm.

The DE can be forced to transit to a Λ-like (w ≈ −1) state at any time by fine-
tuning V(φ). In the Λ-like state ρde overtakes ρm and dominates the recent and
future energy density of the universe. We illustrate tracker quintessence in
Fig. 3.2 using a power law potential V(φ) = Mφ−α (panel b) (Ratra and Peebles,
1988; Caldwell et al., 1998; Zlatev et al., 1999) and an exponential potential
V(φ) = M exp(1/φ) (panel c) (Dodelson et al., 2000).

The tracker paths are attractor solutions of the equations governing the evolution
of the field. If the tracker quintessence field is initially endowed with a density
off the tracker path (e.g. an equipartition of the energy available at reheating) its
density quickly approaches and joins the tracker solution.

Oscillating Dark Energy

Dodelson et al. (2000) explored a quintessence potential with oscillatory per-
turbations V(φ) = M exp(−λφ)

[
1 + A sin(νφ)

]
. They refer to models of this type

as tracking oscillating energy. Without the perturbations (setting A = 0) this
potential causes exact tracker behaviour: the quintessence energy decays as
ρr + ρm and never dominates. With the perturbations the quintessence energy
density oscillates about ρr + ρm as it decays (Fig. 3.2d). The quintessence energy
dominates on multiple occasions and its equation of state varies continuously
between positive and negative values. One of the main motivations for tracking
oscillating energy is to solve the coincidence problem by ensuring that ρde ∼ ρm

or ρde ∼ ρr at many times in the past or future.

It has yet to be seen how such a potential might arise from particle physics.
Phenomenologically similar cosmologies have been discussed in Ahmed et al.
(2004); Yang and Wang (2005); Feng et al. (2006).
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Interacting Quintessence

Non-gravitational interactions between the quintessence field and matter fields
might allow energy to transfer between these components. Such interactions
are not forbidden by any known symmetry Amendola (2000b). The primary
motivation for the exploration of interacting dark energy models is to solve the
coincidence problem. In these models the present matter/dark energy density
proximity r may be constant (Amendola, 2000a; Zimdahl et al., 2001; Amendola
and Quercellini, 2003; França and Rosenfeld, 2004; Guo and Zhang, 2005; Olivares
et al., 2005; Pavón and Zimdahl, 2005; Zhang, 2005; França, 2006; Amendola
et al., 2006, 2007; Olivares et al., 2007) or slowly varying (del Campo et al., 2005,
2006).

We plot a density history of the interacting quintessence model of Amendola
(2000a) in Fig. 3.2e. This model is characterized by a DE potential V(φ) =

A exp[Bφ] and DE-matter interaction term Q = −Cρmφ̇, specifying the rate at
which energy is transferred to the matter fields. The free parameters were tuned
such that radiation domination ends at a = 10−5 and that rt→∞ = 0.35.

3.2.2. Phantom Dark Energy

The analyses of Riess et al. (2004) and Wood-Vasey et al. (2007) have mildly (∼ 1σ)
favored a dark energy equation of state wde < −1. These values are unattainable
by standard quintessence models but can occur in phantom dark energy models
(Caldwell, 2002), in which kinetic energies are negative. The energy density in
the phantom field increases with scalefactor, typically leading to a future “big rip”
singularity where the scalefactor becomes infinite in finite time. Fig. 3.2f shows
the density history of a simple phantom model with a constant equation of state
w = −1.25. The big rip (a = ∞ at t = 57.5 Gyrs) is not seen in log(a)-space.

Caldwell et al. (2003) and Scherrer (2005) have explored how phantom models
may solve the coincidence problem: since the big rip is triggered by the onset
of DE domination, such cosmologies spend a significant fraction of their total
time with r large. For the phantom model with w = −1.25 (Fig. 3.2f) Scherrer
(2005) finds r > 0.1 for 12% of the total lifetime of the universe. Whether this
solves the coincidence or not depends upon the prior probability distribution
Pt(t) for the time of observation. Caldwell et al. (2003) and Scherrer (2005)
implicitly assume that the temporal distribution of observers is constant in time
(i.e. Pt(t) = constant). For this prior the coincidence problem is solved because
the chance of observing r ≥ 0.1 is large (12%). Note that for the “naive Pt(t)”
prior shown in Fig. 3.1, the solution of Caldwell et al. (2003) and Scherrer (2005)
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fails because r > 0.1 is brief in log(a)-space. It fails in this way for many other
choices of Pt(t) including, for example, distributions constant in a or log(t).

3.2.3. K-Essence

In k-essence the DE is modeled as a scalar field with non-canonical kinetic
energy (Chiba et al., 2000; Armendariz-Picon et al., 2000, 2001; Malquarti et al.,
2003). Non-canonical kinetic terms can arise in the effective action of fields
in string and supergravity theories. Fig. 3.2g shows a density history typical
of k-essence models. This particular model is from Armendariz-Picon et al.
(2001) and Steinhardt (2003). During radiation domination the k-essence field
tracks radiation sub-dominantly (with wde = wr = 1/3) as do some of the other
models in Fig. 3.2. However, no stable tracker solution exists for wde = wm(= 0).
Thus after radiation-matter equality, the field is unable to continue tracking
the dominant component, and is driven to another attractor solution (which is
generically Λ-like with wde ≈ −1). The onset of DE domination was recent in
k-essence models because matter-radiation equality prompts the transition to a
Λ-like state. K-essence thereby avoids fine-tuning in any particular numerical
parameters, but the Lagrangian has been constructed ad-hoc.

3.2.4. Chaplygin Gas

A special fluid known as Chaplygin gas motivated by braneworld cosmology
may be able to play the role of dark matter and the dark energy (Bento et al.,
2002; Kamenshchik et al., 2001). Generalized Chaplygin gas has the equation
of state pde = −Aρ−αde which behaves like pressureless dark matter at early times
(wde ≈ 0 when ρde is large), and like vacuum energy at late times (wde ≈ −1 when
ρde is small). In Fig. 3.2h we show an example with α = 1.

3.2.5. Summary of DDE Models

Two broad classes of DDE models emerge from our comparison:

1. In ΛCDM , tracker quintessence and k-essence models, the dark energy
density is vastly different from the matter density for most of the lifetime of
the universe (panels a, b, c, g of Fig. 3.2). The coincidence problem can only
be solved if the probability distribution Pt(t) for the time of observation
is narrow, and overlaps significantly with an r ∼ 1 peak. If Pt(t) is wide,

40



e.g. constant over the life of the universe in t or log(t), then observing
r ∼ 1 would be unlikely in these models and the coincidence problem is
not resolved.

2. Tracking oscillating energy, interacting quintessence, phantom models and
Chaplygin gas models (panels d, e, f, h of Fig. 3.2) employ mechanisms
to ensure that r ∼ 1 for large fractions of the life of the universe. In these
models the coincidence problem may be solved for a wider range of Pt(t)
including, depending on the DE model, distributions that are constant over
the whole life of the universe in t, log(t), a or log(a).

The importance of an estimate of the distribution Pt(t) is highlighted: such an
estimate will either rule out models of the first category because they do not
solve the coincidence problem, or demotivate models of the second because their
mechanisms are unnecessary to solve the coincidence problem. This analysis
does not address the problems associated with fine-tuning, initial conditions
or ad hoc mechanisms of many DDE models (Hebecker and Wetterich, 2001;
Bludman, 2004; Linder, 2006b).

We leave this line of enquiry temporarily to discuss contemporary observational
constraints on the dark energy density history, because we wish to test what
DE dynamics are required to solve the coincidence, beyond those which models
must exhibit to satisfy standard cosmological observations.

3.3. Current Observational Constraints on Dynamic
Dark Energy

3.3.1. Supernovae Ia

Observationally, possible dark energy dynamics is explored almost solely using
measurements of the cosmic expansion history. Recent cosmic expansion is
directly probed by using type Ia supernova (SNIa) as standard candles (Riess
et al., 1998; Perlmutter et al., 1999). Each observed SNIa provides an independent
measurement of the luminosity distance dl to the redshift of the supernova zSN.
The luminosity distance to zSN is given by

dl(zSN) = (1 + zSN)
c

H0

∫ zSN

z=0

dz
E(z)

(3.2)
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Figure 3.3 The energy densities of radiation ρr, matter ρm and the cosmological constant ρΛ

are shown as a function of scalefactor, by the dotted, dashed, and solid lines respectively.
Cosmological probes of dark energy include SNIa, CMB, BAO, the LSS linear growth factor
and constraints from BBN (see text). Each of these probes is sensitive to the effects of
dark energy over different redshift intervals, as indicated. The light grey band envelopes
w0-wa-parameterized DDE models allowed at < 2σ by Davis et al. (2007) (the contour in
w0 −wa space is shown explicitly in Fig. 3.7). The dark grey band envelopes w0-parameterized
DDE models (wa = 0 assumed) allowed at < 2σ by Wood-Vasey et al. (2007). The constraint is
w = −1.09 ± 0.16 at 2σ.
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where

E(z) =
H(z)
H0

(3.3)

=

[
Ωr0(1 + z)4 + Ωm0(1 + z)3 + Ωde0

ρde(z)
ρde0

] 1
2

and thus depends on H0, Ωm0, and the evolution of the dark energy ρde(z)/ρde0.
The radiation term, irrelevant at low redshifts, can be dropped from Equation 3.3.
Ωde0 is a dependent parameter due to flatness (Ωde0 = 1 −Ωm0). Contemporary
datasets include ∼ 200 supernovae at redshifts zSN ≤ 2.16 (a ≥ 0.316) (Astier
et al., 2006; Riess et al., 2007; Wood-Vasey et al., 2007) and provide an effective
continuum of constraints on the expansion history over that range (Wang and
Tegmark, 2005; Wang and Mukherjee, 2006). The redshift range probed by SNIa
is indicated in both panels of Fig. 3.3.

3.3.2. Cosmic Microwave Background

The first peak in the cosmic microwave background (CMB) temperature power
spectrum corresponds to density fluctuations on the scale of the sound horizon
at the time of recombination. Subsequent peaks correspond to higher-frequency
harmonics. The locations of these peaks in l-space depend on the comoving scale
of the sound horizon at recombination, and the angular distance to recombination.
This is summarized by the so-called CMB shift parameter R (Efstathiou and
Bond, 1999; Elgarøy and Multamäki, 2007) which is related to the cosmology by

R =
√

Ωm0

∫ zrec

z=0

dz
E(z)

(3.4)

where zrec ≈ 1089 (Spergel et al., 2006) is the redshift of recombination. The
3-year WMAP data gives a shift parameter R = 1.71 ± 0.03 (Davis et al., 2007;
Spergel et al., 2006). Since the dependence of Equation 3.4 on H0 and Ωm0 differs
from that of Equation 3.2, measurements of the CMB shift parameter can be
used to break degeneracies between H0, Ωm0 and DE evolution in the analysis of
SNIa. In the top panel of Fig. 3.3 we represent the CMB observations using a
bar from z = 0 to zrec.

3.3.3. Baryonic Acoustic Oscillations and Large Scale Structure

As they imprinted acoustic peaks in the CMB, the baryonic oscillations at
recombination were expected to leave signature wiggles - baryonic acoustic
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oscillations (BAO) - in the power spectrum of galaxies (Eisenstein and Hu, 1998).
These were detected with significant confidence in the SDSS luminous red galaxy
power spectrum (Eisenstein et al., 2005). The expected BAO scale depends on
the scale of the sound horizon at recombination, and on transverse and radial
scales at the mean redshift zBAO, of galaxies in the survey. Eisenstein et al. (2005)
measured the quantity

A(zBAO) =

√
Ωm0

E(zBAO) 1
3

[
1

zBAO

∫ zBAO

z=0

dz
E(z)

] 2
3

(3.5)

to have a value A(zBAO = 0.35) = 0.469 ± 0.017, thus constraining the matter
density and the dark energy evolution parameters in a configuration which is
complomentary to the CMB shift parameter and the SNIa luminosity distance
relation. Ongoing BAO projects have been designed specifically to produce
stronger constraints on the dark energy equation of state parameter w. For
example, WIGGLEZ (Glazebrook et al., 2007) will use a sample of high-redshift
galaxies to measure the BAO scale at zBAO ≈ 0.75. As well as reducing the effects
of non-linear clustering, this redshift is at a larger angular distance, making the
observed scale more sensitive to w. Constraints from the BAO scale depend
on the evolution of the universe from zrec to zBAO to set the physical scale of
the oscillations. They also depend on the evolution of the universe from zBAO

to z = 0, since the observed angular extent of the oscillations depends on this
evolution. The bar representing BAO scale observations in the top panel of Fig.
3.3 indicates both these regimes.

The amplitude of the BAOs - the amplitude of the large scale structure (LSS)
power spectrum - is determined by the amplitude of the power spectrum at
recombination, and how much those fluctuations have grown (the transfer
function) between zrec and zBAO. By comparing the recombination power spectrum
(from CMB) with the galaxy power spectrum, the LSS linear growth factor
can be measured and used to constrain the expansion history of the universe
(independently of the BAO scale) over this redshift range. In practice, biases
hinder precise normalization of the galaxy power spectrum, weakening this
technique. The range over which this technique probes the DE is indicated in
Fig. 3.3.

3.3.4. Ages

Cosmological parameters from SN1a, CMB, LSS, BAO and other probes allow us
to calculate the current age of the universe to be 13.8±0.1 (Hinshaw, 2006) assum-
ing ΛCDM . Uncertainties on the age calculated in this way grow dramatically if
we drop the assumption that the DE is vacuum energy (w = −1).
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An independent lower limit on the current age of the universe is found by
estimating the ages of the oldest known globular clusters (Hansen et al., 2004).
These observations rule out models which predict the universe to be younger
than 12.7 ± 0.7 Gyrs (2σ confidence):

t0 = H−1
0

∫
∞

z=0

dz
(1 + z)E(z)

(3.6)
>
∼ 12.7 ± 0.7 Gyrs.

Other objects can also be used to set this age limit Lineweaver (1999), but
generally less successfully due to uncertainties in dating techniques.

Assuming ΛCDM , an age of 12.7 Gyrs corresponds to a redshift of z ≈ 5.5.
Contemporary age measurements are sensitive to the dark energy content from
z ≈ 5.5 to z = 0. In the top panel of Fig. 3.3 we show this redshift interval. The
evolution and energy content of the universe before 12.7 Gyrs ago is not probed
by these age constraints.

3.3.5. Nucleosynthesis

In addition to the constraints on the expansion history (SN1a, CMB, BAO and t0)
we know that ρde/ρtot < 0.045 (at 2σ confidence) during Big Bang Nucleosynthesis
(BBN) (Bean et al., 2001). Larger dark energy densities imply a higher expansion
rate at that epoch (z ∼ 6 × 108) which would result in a lower neutron to proton
ratio, conflicting with the measured helium abundance, YHe.

3.3.6. Dark Energy Parameterization

Because of the variety of proposed dark energy models, it has become usual to
summarize observations by constraining a parameterized time-varying equation
of state. Dark energy models are then confronted with observations in this
parameter space. The unique zeroth order parameterization of w is w = w0 (a
constant), with w = −1 characterizing the cosmological constant model. The
observational data can be used to constrain the first derivative of w. This
additional dimension in the DE parameter space may be useful in distinguishing
models which have the same w0. From an observational standpoint, the obvious
choice of 1st order parameterization is w(z) = w0 + dw

dz z (di Pietro and Claeskens,
2003). This is rarely used today since currently considered DDE models are
poorly portrayed by this functional form. The most popular parameterization
is w(a) = w0 + wa(1 − a) Albrecht et al. (2006); Linder (2006a), which does not
diverge at high redshift.

45



Linder and Huterer (2005) have argued that the extension of this approach to
second order, e.g. w(a) = w0 + wa(1 − a) + waa(1 − a)2, is not motivated by current
DDE models. Moreover, they have shown that next generation observations are
unlikely to be able to distinguish the quadratic from a linear expansion of w.
Riess et al. (2007) have illustrated this recently using new SN1a.

An alternative technique for exploring the history of dark energy is to constrain
w(z) or ρde(z) in independent redshift bins. This technique makes fewer assump-
tions about the specific shape of w(z). In the absence of any strongly motivated
parameterization of w(z) this bin-wise method serves as a good reminder of how
little we actually know from observation. Using luminosity distance measure-
ments from SNIa, DE evolution has been constrained in this way in ∆z ∼ 0.5
bins out to redshift zSN ∼ 2 (Wang and Tegmark, 2004; Huterer and Cooray, 2005;
Riess et al., 2007). In the future, BAO measurements at various redshifts may
contribute to these constraints, however zBAO will probably never be larger than
zSN. Moreover, because the recombination redshift zrec ≈ 1089 is fixed, only the
cumulative effect (from z = zrec to z = 0) of the DE can be measured with the
CMB and LSS linear growth factor. With only this single data point above zSN,
the bin-wise technique effectively degenerates to a parameterized analysis at
z > zSN.

3.3.7. Summary of Current DDE Constraints

If one assumes the popular w0−wa parameterization until last scattering, then all
cosmological probes can be combined to constrain w0 and wa. In a recent analysis
of SN1a, CMB and BAO observations, Davis et al. (2007) found w0 = −1.0 ± 0.4
and wa = −0.4 ± 1.8 at 2σ confidence (the contour is shown in Fig. 3.7). Using
the same observations, Wood-Vasey et al. (2007) assumed wa = 0 and found
w = w0 = −1.09 ± 0.16 (2σ).

The evolution of ρde is related to w by covariant energy conservation (Carroll,
2004)

δρde

ρde
= −3 (w(a) + 1)

δa
a
. (3.7)

The dark energy density corresponding to the w0 − wa parameterization of w is
thus given by

ρde(z) = ρde0 e3wa(a−1) a−3(1+w0+wa). (3.8)

The cosmic energy density history is illustrated in Fig. 3.3. Radiation and matter
densities steadily decline as the dotted and dashed lines. With the DE equation
of state parameterized as w(a) = w0 + wa(1 − a), its density history is constrained

46



to the light-grey area (Davis et al., 2007). If the evolution of w is negligible, i.e.
we condition on wa ≈ 0, then w(a) ≈ w0 and the DE density history lies within
the dark-grey band (Wood-Vasey et al., 2007). If the dark energy is pure vacuum
energy (or Einstein’s cosmological constant) then w = −1 and its density history
is given by the horizontal solid black line.

3.4. The Temporal Distribution of Observers

The energy densities ρr, ρm and ρde, and the proximity parameter r we imagine
we might have observed, depend on the distribution Pt(t) from which we imagine
our time of observation tobs has been drawn. What we can expect to observe
must be restricted by the conditions necessary for our presence as observers
(Carter, 1974). Thus, for example, it is meaningless to suppose we might have
lived during inflation, or during radiation domination, or before the first atoms
(Dicke, 1961).

We can, however, suppose that we are randomly selected cosmology-discovering
observers, and we can expect our observations of ρm and ρde to be typical of
observations made by such observers. This is Vilenkin’s principle of mediocrity
Vilenkin (1995b). Accordingly, the distribution Pt(t) for the time of observation tobs

is proportional to the temporal distribution of cosmology-discovering observers
(referred to henceforth as simply “observers”). Thus to solve the coincidence
problem one must show that the proximity parameter we measure, r0, is typical
of those measured by other observers.

The most abundant elements in the cosmos are hydrogen, helium, oxygen and
carbon (Pagel, 1997). In the past decade > 200 extra solar planets have been
observed via doppler, transit or microlensing methods. Extrapolation of current
patterns in planet mass and orbital period are consistent with the idea that
planetary systems like our own are common in the universe (Lineweaver and
Grether, 2003). All this does not necessarily imply that observers are common,
but it does support the idea that terrestrial-planet-bound carbon-based observers,
even if rare, may be the most common observers. In the following estimation of
Pt(t) we consider only observers bound to terrestrial planets.

3.4.1. First the Planets...

Lineweaver (2001) estimated the terrestrial planet formation rate (PFR) by making
a compilation of measurements of the cosmic star formation rate (SFR) and
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suppressing a fraction of the early stars f (t) to correct for the fact that the
metallicity was too low for those early stars to host terrestrial planetary systems,

PFR(t) = const × SFR(t) × f (t). (3.9)

In Fig. 3.4 we plot the PFR reported by Lineweaver (2001) as a function of
redshift, z = 1

a − 1. As illustrated in the figure, there is large uncertainty in the
normalization of the formation history. Our analysis will not depend on the
normalization of this function so this uncertainty will not propagate into our
analysis. There are also uncertainties in the location of the turnover at high
redshift, and in the slope of the formation history at low redshift - both of these
will affect our results.

The conversion from redshift to time depends on the particular cosmology,
through the Friedmann equation,(

da
dt

)2

= H(a)2a2 (3.10)

= H2
0

[
Ωr0a−2 + Ωm0a−1 +

Ωde0 exp[3wa(a − 1)] a−3w0−3wa−1
]
.

In Fig. 3.5 we plot the PFR from Fig. 3.4 as a function of time assuming the best
fit parameterized DDE cosmology.

3.4.2. ... then First Observers

After a star has formed, some non-trivial amount of time ∆tobs will pass before
observers, if they arise at all, arise on an orbiting rocky planet. This time allows
planets to form and cool and, possibly, biogenesis and the emergence observers.
∆tobs is constrained to be shorter than the life of the host star. If we consider that
our ∆tobs has been drawn from a probability distribution P∆tobs(t). The observer
formation rate (OFR) would then be given by the convolution

OFR(t) = const ×
∫
∞

0
PFR(τ)P∆tobs(t − τ)dτ. (3.11)

In practice we know very little about P∆tobs(t). It must be very nearly zero below
about ∆tobs ∼ 0.5 Gyrs - this is the amount of time it takes for terrestrial planets
to cool and the bombardment rate to slow down. Also, it must be near zero
above the lifetime of a small (0.1M�) star (above ∼ 500 Gyrs). If we assume that
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our ∆tobs is typical, then P∆tobs(t) has significant weight around ∆tobs = 4 Gyrs -
the amount of time it has taken for us to evolve here on Earth.

A fiducial choice, where all observers emerge 4 Gyrs after the formation of their
host planet, is P∆tobs(t) = δ(t− 4 Gyrs). This choice results in an OFR whose shape
is the same as the PFR, but is shifted 4 Gyrs into the future,

OFR(t) = const × PFR(t − 4 Gyrs) (3.12)

(see the lower panel of Fig. 3.5). Even for non-standard w0 and wa values, this
fiducial OFR aligns closely with the r(t) peak and the effect of a wider P∆tobs

is generally to increase the severity of the coincidence problem by spreading
observers outside the r(t) peak. Hence using our fiducial P∆tobs (which is the
narrowest possibility) will lead to conclusions which are conservative in that
they underestimate the severity of the cosmic coincidence. If another choice
for P∆tobs could be justified, the cosmic coincidence would be more severe than
estimated here. We will discuss this choice in Section 3.6.

The OFR is then extrapolated into the future using a decaying exponential with
respect to t (the dashed segment in the lower panel of Fig. 3.5). The observed
SFH is consistent with a decaying exponential. We have tested other choices
(linear & polynomial decay) and our results do not depend strongly on the shape
of the extrapolating function used.

The temporal distribution of observers Pt(t) is proportional to the observer
formation rate,

Pt(t) = const ×OFR(t). (3.13)

This observer distribution is similar to the one used by Garriga et al. (1999)
to treat the coincidence problem in a multiverse scenario. By comparison, our
OFR(t) distribution starts later because we have considered the time required
for the build up of metallicity, and because we have included an evolution stage
of 4 Gyrs. Our distribution also decays more quickly than theirs does. Some
of our cosmologies suffer big-rip singularities in the future. In these cases we
truncate Pt(t) at the big-rip.
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Figure 3.4 The terrestrial planet formation rate as estimated by Lineweaver (2001). It is based
on a compilation of SFR measurements and has been corrected for the low metallicity of the
early universe, which prevents the terrestrial planet formation rate from rising as quickly as
the stellar formation rate at z >

∼ 4.
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Figure 3.5 The terrestrial planet formation from Fig. 3.4 is shown here as a function of time.
The transformation from redshift to time is cosmology dependent. To create this figure we
have used best-fit values for the DDE parameters, w0 = −1.0 and wa = −0.4 (Davis et al., 2007).
The y-axis is linear (c.f. the logarithmic axis in Fig. 3.4) and the family of curves have been
re-normalized to highlight the sources of uncertainty important for this analysis: uncertainty
in the width of the function, and in the location of its peak. The observer formation rate
(OFR) is calculated by shifting the planet formation rate by some amount ∆tobs (= 4 Gyrs) to
allow the planet to cool, and the possible emergence of observers. These distributions are
closed by extrapolating exponentially in t.
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3.5. Analysis and Results: Does fitting contemporary
constraints necessarily solve the cosmic coincid-
ence?

For a given model the proximity parameter observed by a typical observer is
described by a probability distribution Pr(r) calculated as

Pr(r) =
∑ dt

dr
Pt(t(r)). (3.14)

The summation is over contributions from all solutions of t(r) (typically, any
given value of r occurs at multiple times during the lifetime of the Universe).
In Fig. 3.6 we plot Pr(r) for the w0 = −1.0, wa = −0.4 cosmology. In this case,
observers are distributed over a wide range of r values, with 71% seeing r > r0,
and 29% seeing r < r0.

We define the severity S of the cosmic coincidence problem as the probability
that a randomly selected observer measures a proximity parameter r lower than
we do:

S = P(r < r0) = 1 − P(r > r0) =

∫ r0

r=0
Pr(r)dr. (3.15)

For the w0 = −1.0, wa = −0.4 cosmology of Figs. 3.5 and 3.6, the severity is
S = 0.29 ± 0.09. This model does not suffer a coincidence problem since 29% of
observers would see r lower than we do. If the severity of the cosmic coincidence
would be near 0.95 (0.997) in a particular model, then that model would suffer
a 2σ (3σ) coincidence problem and the value of r we observe really would be
unexpectedly high.

We calculated the severities S for cosmologies spanning a large region of the
w0 − wa plane and show our results in Fig. 3.7 using contours of equal S. The
severity of the coincidence problem is low (e.g. S <

∼ 0.7) for most combinations of
w0 and wa shown. There is a coincidence problem, where the severity is high
(S >
∼ 0.8), in two regions of this parameter space. These are indicated in Fig. 3.7.

Some features in Fig. 3.7 are worth noting:

• Dominating the left of the plot, the severity of the coincidence increases
towards the bottom left-hand corner. This is because as w0 and wa become
more negative, the r peak becomes narrower, and is observed by fewer
observers.

• There is a strong vertical dipole of coincidence severity centered at (w0 =

0,wa = 0). For (w0 ≈ 0,wa > 0) there is a large coincidence problem because
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in such models we would be currently witnessing the very closest approach
between DE and matter, with ρde � ρm for all earlier and later times (see
Fig. 3.8c). For (w0 ≈ 0,wa < 0) there is an anti-coincidence problem because
in those models we would be currently witnessing the DDE’s furthest
excursion from the matter density, with ρde and ρm in closer proximity for
all relevant earlier and later times, i.e., all times when Pt(t) is non-negligible.

• There is a discontinuity in the contours running along wa = 0 for phantom
models (w0 < −1). The distribution Pt(t) is truncated by big-rip singularities
in strongly phantom models (provided they remain phantom; wa > 0). This
truncation of late-time observers means that early observers who witness
large values of r represent a greater fraction of the total population.

To illustrate these features, Fig. 3.8 shows the density histories and observer
distributions for four specific examples selected from the w0 − wa plane of Fig.
3.7.

We find that all observationally allowed combinations of w0 and wa result in low
severities (S < 0.4), i.e., there are large (> 60%) probabilities of observing the
matter and vacuum density to be at least as close to each other as we observe
them to be.
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Figure 3.6 The predicted distribution of observations of r is plotted for the parameterized DDE
model which best-fits cosmological observations: w0 = −1.0 and wa = −0.4. The proximity
parameter we observe r0 =

ρm0

ρde0
≈ 0.35 is typical in this cosmology since only 29% of observers

(vertical striped area) observe r < 0.35. The upper and lower limits on this value resulting
from uncertainties in the SFR are 38% and 20% respectively. Thus the severity of the cosmic
coincidence in this model is S = 0.29±0.09. This model does not suffer a coincidence problem.
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3.6. Discussion

It was not clear what DDE dynamics were required to solve the coincidence
problem. Our analysis might have resulted in new constraints on the values of
w0 and wa, by simply demanding that we do not live during a special time in
which r ∼ 1. There are regions of w0 − wa parameter space that can be ruled out
in this manner (see Fig. 3.7) however those points are already strongly excluded
by observational constraints on w0 and wa. Therefore, the cosmic coincidence
problem can not be used as a tool to further constrain DDE since the problem is
solved for all DDE models satisfying observational constraints on w0 and wa.

The main result of our analysis is that any DDE model in agreement with current
cosmological constraints has ρde ∼ ρm for a significant fraction of observers.

Interacting quintessence models in which the proximity parameter asymptotes to
a constant at late times (Amendola, 2000a; Zimdahl et al., 2001; Amendola and
Quercellini, 2003; França and Rosenfeld, 2004; Guo and Zhang, 2005; Olivares
et al., 2005; Pavón and Zimdahl, 2005; Zhang, 2005; França, 2006; Amendola
et al., 2006, 2007; Olivares et al., 2007) have been proposed as a solution to
the coincidence problem. More recently, del Campo et al. (2005, 2006) have
argued for a broader class of interacting quintessence models that “soften” the
coincidence problem by predicting a very slowly varying (though not constant)
proximity parameter. Our analysis finds that r need not asymptote to a constant,
nor evolve particularly slowly, partially undermining the motivations for these
interacting quintessence models.

Caldwell et al. (2003) and Scherrer (2005) have proposed that the coincidence
problem may be solved by phantom models in which there is a future big-
rip singularity because such cosmologies spend a significant fraction of their
lifetimes in r ∼ 1 states. In our work Pt(t) is terminated by big-rip singularities in
ripping models. In non-ripping models, however, the distribution is effectively
terminated by the declining star formation rate. Therefore the big-rip gives
phantom models only a marginal advantage over other models. This marginal
advantage manifests as the discontinuity along wa = 0 on the left side of Fig. 3.7.

We could improve our analysis, in the sense of getting tighter coincidence
constraints (larger severities), if we used a less conservative P∆tobs . We used the
most conservative choice - a delta function - because the present understanding
of the time it takes to evolve into observers is too poorly developed to motivate
any other form of P∆tobs . Another possible improvement is the DE equation of
state parameterization. We used the current standard, w = w0 + wa(1 − a), which
may not parameterize some models well for very small or very large values of a.
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We conclude that DDE models need not be fitted with exact tracking or oscillatory
behaviors specifically to solve the coincidence by generating long or repeated
periods of ρde ∼ ρm. Also, particular interactions guaranteeing ρde ∼ ρm for long
periods are not well motivated. Moreover phantom models have no significant
advantage over other DDE models with respect to the coincidence problem
discussed here.
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Figure 3.7 Here we plot contours of equal severity S in w0 − wa parameter space. S is the
fraction of observers who see r < r0. If S is large, a large percentage of observers should see
r lower than we do - those models suffer coincidence problems. The thick black contour
represents the observational constraints on w0 and wa from Davis et al. (2007) (2σ confidence
and marginalized over other uncertainties). In Lineweaver and Egan (2007) we showed that
the severity of the coincidence problem is low for ΛCDM (indicated by the “+”). Values of w0

and wa that result in a mild coincidence problem (e.g. S >
∼ 0.7) are already strongly excluded

by observations. This leads to our main result: none of the models in the observationally
allowed regime suffer a cosmic coincidence problem when our estimate of the temporal
distribution of observers Pobs(t) is used as a selection function.
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Figure 3.8 History of the energy densities in radiation (dotted line), matter (dashed line) and
dark energy (thick black line) for four parameterized DE models from Fig. 3.7. The proximity
parameter r (thin black line) and the temporal distribution of observers Pt(t) (grey shade)
are also given. Panel a shows a phantom model with a constant equation of state w = −3.5.
In this model the phantom density increases quickly and the r(t) peak is narrow. As a
result, a large fraction of observers live while the matter and dark energy densities are vastly
different (r ≈ 0) and there is a mild coincidence problem (S ≈ 0.8). This might be used to
rule-out the model shown in Panel a, except that it is already strongly excluded by direct
cosmological observations (refer to Fig. 3.7). Panel b shows a phantom model which lies
within the observationally allowed 2σ region. There is no coincidence problem in this model
(S ≈ 0.4). Panel c shows a model in which there is a coincidence problem (S ≈ 0.95). This
models lies within the cluster of contours in the upper right-hand corner of Fig. 3.7. In this
model the dark energy dominates the past and future energy budget. Again however, the
coincidence problem can tell us nothing new, as this model is already strongly excluded by
observations. Panel d shows a model in which there is an anti-coincidence problem. This
models lies within the cluster of contours in the lower right-hand corner of Fig. 3.7. In this
model the dark energy and matter densities are more similar (r is greater) in the recent past
and near future (although r→ 0 further into the past or future). According to the observer
distribution Pt(t) most observers live near the current epoch, during r > 0.35, with just 7%
living during r < 0.35 (S = 0.07) in this particular model. One might argue that this model
can be ruled out because our value of r is anomalously small. However, this model too is
already strongly excluded by observations.
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Appendix A: Numerical Values for Parameters of Mod-
els Illustrated in Fig. 3.2

Model Parameter Value
power law tracker quintessence α 2

M 1.4 × 10−124

exponential tracker quintessence M 1.3 × 10−124

tracking oscillating energy M 1.8 × 10−126

λ 4
A 0.99
ν 2.7

interacting quintessence A 1.4 × 10−119

B 9.7
C 16

Chaplygin gas α 1
A 2.8 × 10−246

Table 3.1 Free parameters of the DDE models illustrated in Fig. 3.2. These values were chosen
such that observational constraints are crudely satisfied. These are by no means the only
combinations fitting observations. These values are intended for the purposes of illustration
in Fig. 3.2. Units are Planck units.
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CHAPTER 4

COMPARING THE SUN TO OTHER
STARS: SEARCHING FOR LIFE

TRACERS AMONGST THE SOLAR
PROPERTIES

Here comes the Sun,
here comes the Sun,
and I say it’s alright.

- The Beatles, “Here Comes the Sun”

4.1. Introduction

In the past decade the first several hundred extra-solar planets have been detected
using various techniques. These techniques are all biased towards massive planets
in small orbits (so-called hot Jupiters). The next generation of projects (including
NASA’s Terrestrial Planet Finder and ESA’s Darwin Project) is eagerly anticipated,
with the discovery of Earth-like planets orbiting within habitable zones expected.
In the mean time, the search for solar twins (stars with properties most like those
of the Sun) in stellar surveys, continues. The reason behind our fascination with
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Earth-like planets and Sun-like stars is that without a thorough understanding
of the requirements of life, a reasonable strategy in the search for extra terrestrial
life is to look in environments that we know are capable of hosting life, i.e. those
planets and stars which are most like our own.

If the emergence of life and observers on a planet depends on special properties
of the planet’s host star, then we would expect our Sun to exhibit those properties
and stand out when compared to a sample of randomly selected stars. In this
way, the comparison of the Sun to other stars may be a way of identifying stellar
properties important to the origin of life and the evolution of observers.

What we stand to gain by looking for anomalous properties in the Sun are state-
ments about the dependence of life on various stellar properties (the reliability of
which can be quantified). Such information could be used to improve searches
for life in the universe by focussing them on the most important properties.

An early example of this type of work is Gonzalez (1999a,b) who proposed,
based on his findings that the Sun was more massive than 91% of all stars, that
life may exist preferentially around high-mass stars.

Taken together however, previous work of this type is inconsistent in its conclu-
sions. While Gonzalez (1999a,b); Gonzalez et al. (2001) suggested the Sun to be
anomalous, Gustafsson (1998); Allende Prieto (2006) found it to be typical. These
discrepancies result from inconsistent use of language, stellar sample selection
and inconsistency in the choice of stellar/solar properties compared.

In order to clarify these issues we have undertaken a joint 11-parameter χ2 analysis
that compares the Sun to representative samples of stars in 11 independent
properties plausibly related to life and habitability. The analysis quantifies the
degree of (a)typicality of the Sun and draws conclusions about the legitimacy of
postulated links between particular properties and habitability.

4.2. Selection of Solar Properties and Stellar Samples

Since the purpose of our analysis is to identify significantly anomalous solar
properties (or a lack thereof), it is important that our selection criteria is not
dependent on any prior knowledge we may have about the (a)typicality of
the Sun with respect to its properties. Intentionally selecting one (or a few)
parameters in which the Sun is known to be anomalous would pre-load the
result.

Suppose, for example, that the Sun has previously been compared to repres-
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entative samples of stars in 20 uncorrelated parameters, none of which play
any significant role in determining habitability. It should be expected that the
Sun is a 2σ (95-percentile) outlier in one in these parameters (call it X) just by
pure chance. If the present analysis were conducted using just X, naive that X
had been selected, the results would erroneously suggest that X was related to
habitability.

On the other hand, the indiscriminant inclusion of properties unlikely to have
any connection to habitability could dilute a legitimate signal. Suppose that Y is
a stellar property, and that only stars in the upper 2.5% with respect to Y are
capable of hosting life (the upper 2.5% are amongst the 95-percentile outliers).
The 2σ signal can be diluted away by including ∼ 1/0.05 = 20 other parameters
(and can be reduced to a 90% signal by including just 2 other parameters).

No single stellar survey contains unbiased measurements in as many parameters
as we are interested in, and for this reason we have used different stellar samples
for each parameter. The benefit of being able to choose the best available sample
for each parameter comes at a cost, which is that we must eliminate any correlated
parameters from our analysis.

With the above considerations in mind, we have included 11 maximally uncor-
related stellar properties all of which are plausibly related to habitability and for
which a sufficiently large unbiased sample of stellar values exists. The included
properties come from a full set of 23 candidates (refer to Robles et al. (2008b)
for the full list and correlation analysis). Below we give a brief description of
the 11 included properties, along with a brief description of their relevance to
habitability and a description of the stellar samples we have used for each.

1. Mass: The mass of a star is arguably the most important property of a
star. It determines luminosity, temperature and main sequence longevity,
in turn influencing conditions and stability in the circumstellar habitable
zone. Low mass stars are intrinsically dim, so large stellar samples are
biased towards high-mass stars. We have used the nearest 125 stars from
the RECONS compilation (Henry, 2006), which is complete to 7.1 pc.

2. Age: If the evolution of observers takes (on average) much longer than
typical lifetime of a star (Carter, 1983) then observers may be expected to
arise preferentially around older stars. We construct an age distribution for
stars in the galaxy using galactic star formation history from Rocha-Pinto
et al. (2000). Their star formation history is based on chromospheric ages
of 552 dwarf stars at up to 200 pc, and has been corrected for scale-height,
stellar evolution and volume incompleteness. We also consider the cosmic
age distribution, using the cosmic star formation history from Hopkins
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(2006).

3. Metallicity [Fe/H]: A star’s iron content is a good proxy for its abundance
in other elements heavier than helium. With regard to this analysis, metal-
lically is correlated with abundance of the ingredients for terrestrial planets
(O, Fe, Si and Mg) and life (C, O, N and S). We use the sample of 453 FGK
stars of Grether and Lineweaver (2006, 2007) selected from the Hipparcos
catalogue. This sample is complete to 25 pc for stars within the spectral
range F7-K3 and absolute magnitude of MV ≥ 8.5 (Reid, 2002) and contains
metallicities derived from a range of spectroscopic and photometric surveys.

4. Carbon-to-oxygen ratio [C/O]: The relative abundance of carbon to oxygen
impacts the abundance of oxygen (and the balance of REDOX chemistry)
in the circumstellar habitable zone. If [C/O] is higher than 1, most oxygen
forms carbon monoxide which is subsequently cleared by stellar winds
leaving a chemically reducing habitable zone (Kuchner and Seager, 2005).
For our stellar distribution in [C/O] we use 256 stars from Gustafsson et al.
(1999); Reddy et al. (2003); Bensby and Feltzing (2006).

5. Magnesium-to-silicon ratio [Mg/Si]: After [Fe/H] and [C/O], the mag-
nesium to silicon ratio is the next most important elemental abundance
ratio, also impacting terrestrial planet chemistry. Our stellar distribution in
[Mg/Si] consists of 231 stars from Reddy et al. (2003); Bensby et al. (2005).

6. Rotational velocity v sin i: The rotational velocity of a star is related to the
angular momentum of the protoplanetary disk. A low rotational velocity
may be correlated with the presence of planets (Soderblom, 1983). We
use the subset of 276 stars in the 0.9-1.1M� mass range from the sample
of Valenti and Fischer (2005). By cutting near the solar value in mass we
minimize the effects of a known correlation between stellar mass and v sin i
which becomes significant at higher masses.

7. Eccentricity of the star’s galactic orbit e: The galactic orbit of a star de-
termines the stellar environments that the star passes through. Stars with
highly eccentric orbits pass closer to the galactic center where the risk of a
nearby supernova, and the flux of potentially harmful radiation is higher.
We use the distribution of stellar eccentricities from 1987 stars witin 40 pc
as computed by Nordström et al. (2004).

8. Maximum height away from the galactic plane Zmax: As the Sun oscillates
through the thin disk of the galaxy objects in the Oort cloud may be
disrupted by tidal gravitational forces. It is plausible that the frequency of
such disruptions (for which Zmax is a proxy) influences the frequency of
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impacts on planets in the habitable zone. For Zmax we use the same stellar
sample as we did for eccentricity.

9. Mean galactocentric radius RGal: The mean galactocentric radius is the
most important of a star’s galactic orbital properties. It determines (to a
greater degree than eccentricity for typical eccentricities) the minimum
approach to the galactic center, the risk of nearby supernova, and the flux
of potentially harmful radiation from the galactic center. Our distribution
of RGal is based on the model of Bahcall and Soneira (1980) assuming a
scale length of 3.0 ± 0.4 kpc (Gould et al., 1996).

10. The stellar mass of the star’s host galaxy Mgal: This influences the overall
(galactic) metallically, including the metallically of the star’s neighbourhood.
We construct a distribution of Mgal based on the K-band luminosity function
of Loveday (2000) and assume a constant stellar-mass-to-light ratio of 0.5
(Bell and de Jong, 2001). It is important to note that we are interested in
the distribution of stars in Mgal, not the distribution of galaxies in Mgal.

11. The stellar mass of the star’s host group of galaxies Mgroup: This is correlated
with the density of the galactic environment. This influences the stability
of the host galaxy. We use the B-band luminosity distribution of galactic
groups from the 2dFGRS Percolation-Inferred Galaxy Groups catalogue
(Eke et al., 2004) and assume a constant stellar-mass-to-light ratio of 1.5
(Bell and de Jong, 2001). As for host galaxy mass, we are interested in the
distribution of stars in Mgroup, not the distribution of groups in Mgroup.

4.3. Analysis and Results

The solar values x�,i of the selected properties i = 1, 11 are taken (or derived from
related properties) from the literature. The solar values are shown in Table 4.1.

We find the median µ1/2,i and the 16th and 84th percentiles for each of the
distributions. 68% of a distribution is between the 16th and 84th percentiles,
and in the case of a Gaussian distribution this interval corresponds to the ±1σ
interval.

Our distributions are generally asymmetric. Since we are calculating the deviation
of the Sun from the mean stellar sample we are most interested in the width
of the distributions in the direction of the solar value. We define σ68,i as the
difference between the median and the 16th or 84th percentile, depending on
whether the solar value is below or above the median.
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i Parameter [units] Solar Value x�,i Median Value µ1/2,i σ68,i

1 Mass [M�] 1a 0.33 0.37
2 Age [Gyr] 4.93.1

2.7
b 5.4 3.25

3 [Fe/H] 0a
−0.08 0.20

4 [C/O] 0a 0.07 0.09
5 [Mg/Si] 0a 0.01 0.04
6 v sin i [km s−1] 1.28c 2.51 1.27
7 e 0.036 ± 0.002d 0.10 0.05
8 Zmax [kpc] 0.104 ± 0.006e 0.14 0.10
9 RGal [kpc] 7.62 ± 0.32 f 4.9 5.03
10 MGal [M�] 1010.55±0.16g 1010.2 0.47α

11 Mgroup [M�] 1010.91±0.07h 1011.1 0.47α

Table 4.1 The solar values of the 11 properties included in this analysis.
a. By definition.
b. Chromospheric age of the Sun from Wright et al. (2004).
c. Rotational velocity at the surface is v = 1.63 km s−1 (Valenti and Fischer, 2005). We calculate
a v sin i which may be compared to our stellar v sin i distribution by apply a factor of π

4 (the
average over of sin i over a 3-sphere; this simulates randomizing the inclination at which the
Sun is viewed).
d. The eccentricity of the Sun’s galactic orbit is calculated from solar motion reported in
Dehnen and Binney (1998).
e. Found by integrating the solar orbit in the galactic potential (initial motion as reported in
Dehnen and Binney (1998)).
f. Eisenhauer et al. (2005)
g. Derived in the same way as our distribution: by applying a 0.5 stellar-mass-to-light ratio
to the K-band luminosity. The K-band luminosity is inferred from the V-band measured by
Courteau and van den Bergh (1999) using the mean color of an Sbc spiral galaxy from the
2MASS Large Galaxy Atlas (Jarrett et al., 2003) and the color conversion prescription of Driver
et al. (1994).
h. Derived in the same way as our distribution: by applying a 1.5 stellar-mass-to-light ratio to
the B-band luminosity of 2PIGG and Local Group galaxies from Courteau and van den Bergh
(1999).
α. These distributions span several orders of magnitude and are analyzed in log10-space. The
σ68,i values for MGal and Mgroup represent widths measured in log10-space.

66



Figure 4.1 The histogram shows the masses of the volume complete sample of 125 stars from
RECONS (Henry, 2006). The median of the distribution is indicated by the vertical grey
line, and the 68% and 95% intervals are represented by the dark grey and light grey shades
respectively. The Sun, indicated by the “�”, is found to be more massive than 95 ± 2% of
stars in the Universe when the RECONS sample is used to represent the cosmic distribution
of stellar mass. We have also over-plotted the initial mass function (Kroupa, 2002), which
we have normalized to 125-stars for the purposes of this plot. The initial mass function may
be expected to trace the stellar mass function, since stars with masses lower than ∼ 1M�
have main sequence lifetimes longer than the age of the Universe. We find good agreement
between the histogram and the IMF: the Sun is more massive than 94 ± 2% of all stars when
the IMF is used instead of the RECONS sample.
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The medians µ1/2,i and widths σ68,i of the stellar distributions are shown in the last
two columns of Table 4.1. Figures 4.1, 4.2 and 4.3 show the stellar distributions
in first three properties: mass, age and metallicity. These figures have been
included as examples. The equivalent figures for parameters 4-11 are omitted
from this summary, but can be found in the reviewed publication of this work
(Robles et al., 2008b).

We compute the combined deviation of the solar properties from those of an
average star using the χ2 statistic.

χ2
�

=

N=11∑
i=1

(x�,i − µ1/2,i)2

σ2
68,i

(4.1)

While uncertainties in the solar values are propagated directly, we employ a
bootstrap (Efron, 1979) to account for the uncertainties in µ1/2,i and σ68,i due
to small number statistics. This involves randomly repeatedly resampling the
distributions (from the original samples, but allowing the same star to be drawn
multiple times), and calculating the corresponding µ1/2,i, σ68,i and χ2

�
each time.

We find the combined 11-parameter solar chi-square to be

χ2
�

= 8.39 ± 0.96. (4.2)

The probability of selecting, at random, a star which is more normal than the
Sun (a star with a lower χ2) can be calculated using the standard χ2 distribution
for 11 degrees of freedom.

P(< χ2
�
|N = 11) = 0.32 ± 0.09 (4.3)

The probability calculated above relies on the assumption that our 11 properties
are normally distributed. Since several of our distributions are poorly approx-
imated by Gaussians (for example age, see Figure 4.2), we have performed a
Monte Carlo simulation (Metropolis and Ulam, 1949) to calculate a more accurate
value of P. In the Monte Carlo simulation a large number of stars are randomly
selected from our distributions and their χ2 are calculated (according to equation
4.1). In this way we find that the probability of randomly selecting a star more
normal than the Sun is

PMC(< χ2
�
|N = 11) = 0.29 ± 0.11. (4.4)

68



Figure 4.2 The distribution of ages of stars in our galaxy (the histogram) is inferred from the
galactic star formation history of Rocha-Pinto et al. (2000). The Sun is found to be younger
than 53 ± 2% of stars in the disk of the galaxy. The distribution of cosmic stellar ages from
the cosmic star formation history of Hopkins (2006) (over-plotted) peaks at around 10 Gyrs,
representing the burst of star formation associated with giant ellipticals 1-4 Gyrs after the big
bang. The Sun is younger than 86 ± 5% of stars in the Universe.
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Figure 4.3 The distribution of stellar metallicities [Fe/H], represented by 453 FGK Hipparcos
stars selected by Grether and Lineweaver (2007). The Sun’s metallicity is higher than 65 ± 2%
of other stars.
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4.4. Discussion

Of the 11 stellar properties included in this study, the Sun is most anomalous
in its mass (more massive than 95 ± 2% stars in our sample), in the eccentricity
of its galactic orbit (which is lower than 93 ± 1% of stars in our sample) and
in its rotational velocity (which is slower than 83 ± 7% of stars in our sample).
Panel A of figure 4.4 illustrates how the solar values compare to the 68% and
95% intervals for each of the parameters. The levels of solar anomaly for each of
the properties are shown in Panel D as a percentile, and in terms of the number
of standard deviations from the median.

When mass, eccentricity and rotational velocity are combined with our other
parameters, which are also plausibly related to habitability, the Sun looks entirely
mediocre. The probability of selecting a star, at random, which is more typical
than the Sun with respect to these parameters is only 23 ± 11%.

This result undermines suggestions that an anthropic explanation is required for
the Sun’s unusually large mass. The alternative explanation, which is defended
by our results is that in measuring the properties of the Sun we have come across
a few mild outliers - as few and as mild as we should expect for a random star,
given the number of properties measured. A convenient visualization of this
is given in Panel C of figure 4.4. The 11 properties are arranged in decreasing
order of n%, where n% is the percentage of stars with sub-solar values in a given
property. When arranged in this way, we expect the parameters to be near the
line given by

n j,expected% =

[
1 −

( j − 1/2)
N

]
× 100% (4.5)

where N = 11 is the number of parameters. Any anomalies that cannot be
attributed to noise would appear up as points significantly far from the line.

We have repeated the analysis without mass and eccentricity and find the Sun
to be unexpectedly average: only 7 ± 4% of stars are more average than the Sun
with respect to the remaining 9 parameters. This supports the proposition that
the anomalies observed in mass and eccentricity are expected by pure chance. By
including just mass and eccentricity, we find that the Sun is more anomalous than
94± 4% of stars. This would be some evidence (2σ) for an anthropic explanation
for one or both of these properties, if they had not been selected to ensure this
result.

Our parameter selection criteria selected a larger number of properties plausibly
related to life. Without strong evidence suggesting that any are more important
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Figure 4.4 Various representations of our main results.
A. Comparing the solar values to the 68% (dark grey) and 95% (light grey) intervals for each
parameter. The horizontal line represents the median of each of the distributions, and the
vertical axis is normalized to the longer of the two 95% intervals for each of the distributions.
B. A histogram of the distribution of parameters in standard deviation compared to a gaussian.
C. The percentage of stars n% with sub-solar values for each of the parameters in decreasing
order of n%. The line represents the expected arrangement of points “�” for randomized
parameter values. Significant deviations from the line may indicate unexpected anomalies,
none of which are seen here.
D. Each of the solar properties is plotted in n%-standard deviation space. If the distributions
were Gaussian the points would fall along the solid line.
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than any other, they have been treated equally. A potential extension of this work
would be the inclusion of factors to weight the plausibility (based on planetary
formation models and biology) that a property is related to life.
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CHAPTER 5

A LARGER ESTIMATE OF THE
ENTROPY OF THE UNIVERSE

We are all
made of stars.

We were created in the birth of stars.

- Encounter, “Starborn”

5.1. Introduction

The entropy budget of the universe is important because its increase is associated
with all irreversible processes, on all scales, across all facets of nature: gravita-
tional clustering, accretion disks, supernovae, stellar fusion, terrestrial weather,
and chemical, geological and biological processes (Frautschi, 1982; Lineweaver
and Egan, 2008).

Recently, Frampton et al. (2008) and Frampton and Kephart (2008) reported
the entropy budget of the observable universe. Their budgets (listed aside
others in Table 5.1) estimate the total entropy of the observable universe to be
Sobs ∼ 10102k − 10103k, dominated by the entropy of supermassive black holes
(SMBHs) at the centers of galaxies. That the increase of entropy has not yet been
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capped by some limiting value, such as the holographic bound (’t Hooft, 1993;
Susskind, 1995) at Smax ∼ 10123k (Frampton et al., 2008), is the reason dissipative
processes are ongoing and that life can exist.

In this paper, we improve the entropy budget by using recent observational
data and quantifying uncertainties. The paper is organized as follows. In what
remains of the Introduction, we describe two different schemes for quantifying
the increasing entropy of the universe, and we comment on caveats involving the
identification of gravitational entropy. Our main work is presented in Sections
5.2 and 5.3, where we calculate new entropy budgets within each of the two
accounting schemes. We finish in Section 5.4 with a discussion touching on the
time evolution of the budgets we have calculated, and ideas for future work.

Throughout this paper we assume flatness (Ωk = 0) as predicted by inflation
(Guth, 1981; Linde, 1982) and supported by observations (Spergel et al., 2007).
Adopted values for other cosmological parameters are h = 0.705 ± 0.013, ωb =

Ωbh2 = 0.0224 ± 0.0007, ωm = Ωmh2 = 0.136 ± 0.003 (Seljak et al., 2006), and
TCMB = 2.725 ± 0.002 K (Mather et al. 1999; quoted uncertainties are 1σ).

5.1.1. Two Schemes for Quantifying the Increasing Entropy of
the Universe

Modulo statistical fluctuations, the generalized second law of thermodynamics
holds that the entropy of the universe (including Bekenstein-Hawking entropy
in the case of any region hidden behind an event horizon), must not decrease
with time (Bekenstein, 1974; Gibbons and Hawking, 1977). Within the FRW
framework, the generalized second law can be applied in at least two obvious
ways:

1. The total entropy in a sufficiently large comoving volume of the universe
does not decrease with cosmic time,

dScomoving volume ≥ 0. (5.1)

2. The total entropy of matter contained within the cosmic event horizon
(CEH) plus the entropy of the CEH itself, does not decrease with cosmic
time,

dSCEH interior + dSCEH ≥ 0. (5.2)

In the first of these schemes, the system is bounded by a closed comoving
surface. The system is effectively isolated because large-scale homogeneity and
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isotropy imply no net flows of entropy into or out of the comoving volume.
The time-slicing in this scheme is along surfaces of constant cosmic time. Event
horizons of black holes are used to quantify the entropy of black holes, however
the CEH is neglected since the assumption of large-scale homogeneity makes it
possible for us to keep track of the entropy of matter beyond it. A reasonable
choice for the comoving volume in this scheme is the comoving sphere that
presently corresponds to the observable universe, i.e., the gray area in Figure
5.1. Correspondingly, in Section 5.2 we calculate the present entropy budget of
the observable universe and we do not include the CEH.

The second scheme is similar to the first in that we time-slice along surfaces
of constant cosmic time. However, here the system (yellow shade in Figure
5.1) is bounded by the time-dependent CEH instead of a comoving boundary.
Migration of matter across the CEH is not negligible, and the CEH entropy
(Gibbons and Hawking, 1977) must be included in the budget to account for
this (e.g. Davis et al. 2003). The present entropy of the CEH and its interior is
calculated in Section 5.3.

5.1.2. Entropy and Gravity

It is widely appreciated that non-gravitating systems of particles evolve toward
homogenous temperature and density distributions. The corresponding increase
in the volume of momentum-space and position-space occupied by the constitu-
ent particles represents an increase in entropy. On the other hand, strongly
gravitating systems become increasingly lumpy. With “lumpyness” naively akin
to “orderliness”, it is not as easy to see that the total entropy increases. In these
systems the entropy is shared among numerous components, all of which must
be considered.

For example, approximately collisionless long-range gravitational interactions
between stars result in dynamical relaxation of galaxies (whereby bulk motions
are dissipated and entropy is transferred to stars in the outer regions of the
galaxy; Lynden-Bell 1967) and stellar evaporation from galaxies (whereby stars
are ejected altogether, carrying with them energy, angular momentum and
entropy, and allowing what remains behind to contract; e.g. Binney and Tremaine
2008). In more highly dissipative systems, i.e., accretion disks, non-gravitational
interactions (viscosity and/or magnetorotational instability; Balbus and Hawley
2002) transfer angular momentum and dissipate energy and entropy.

In addition to these considerations, entropy also increases when gravitons are
produced. A good example is the in-spiral of close binaries, such as the Hulse-
Taylor binary pulsar system (Hulse and Taylor, 1975; Weisberg and Taylor, 2005).
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Figure 5.1 These two panels show the particle horizon (see Equation 5.42 and Figure 5.9) and
the cosmic event horizon (see Equation 5.46) as a function of time. The difference between
the two panels is the spatial coordinate system used: the x-axis in the bottom panel is
proper distance D and in the top panel it is comoving distance χ ≡ D

a , where a is the cosmic
scalefactor. The origin is chosen so that our galaxy is the central vertical dotted line. The
other dotted lines represent distant galaxies, which are approximately comoving and recede
as the universe expands. The region inside the particle horizon is the observable universe.
The comoving volume that corresponds to the observable universe today, about 13.7 Gyr after
the big bang, is filled gray. In scheme 1, the entropy within this comoving volume increases
(or remains constant) with time. Alternatively, in scheme 2 the entropy within the event
horizon (the region filled yellow), plus the entropy of the horizon itself, increases (or remains
constant) with time.
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Gravitational waves emitted from the system extract orbital energy (and therefore
entropy) allowing the system to contract.

The entropy of a general gravitational field is still not known. Penrose (1987,
1979, 2004) has proposed that it is related to the Weyl curvature tensor Wµνκλ. In
conformally flat spacetimes (such as an ideal FRW universe), the Weyl curvature
vanishes and gravitational entropy is postulated to vanish (to limits imposed
by quantum uncertainty). In clumpy spacetimes the Weyl curvature takes large
values and the gravitational entropy is high. While Ricci curvature Rµν vanishes
in the absence of matter, Weyl curvature may still be non-zero (e.g. gravitational
waves traveling though empty space) and the corresponding gravitational entropy
may be non-zero.

If these ideas are correct then the low gravitational entropy of the early universe
comes from small primordial gravitational perturbations. Gravitational entropy
then increases with the growing amplitude of linear density fluctuations para-
meterized through the matter power spectrum P(k). The present gravitational
entropy, however, is expected to be dominated by the nonlinear overdensities
(with large Weyl tensors) which have formed since matter-radiation equality.

In extreme cases, gravitational clumping leads to the formation of black holes.
The entropy of black holes is well known (Bekenstein, 1973; Hawking, 1976;
Strominger and Vafa, 1996). The entropy of a Schwarzschild black hole is given
by

SBH =
kc3

G~
A
4

=
4πkG

c~
M2 (5.3)

where A = 16πG2M2

c4 is the event-horizon area and M is the black hole mass.

Because gravitational entropy is difficult to quantify, we only include it in the
two extremes: the thermal distribution of gravitons and black holes.

5.2. The Present Entropy of the Observable Universe

The present entropy budget of the observable universe was estimated most
recently by Frampton et al. (2008) and Frampton and Kephart (2008). Those
papers and earlier work (Kolb and Turner, 1981; Frautschi, 1982; Penrose, 2004;
Bousso et al., 2007) identified the largest contributors to the entropy of the
observable universe as black holes, followed distantly by the cosmic microwave
background (CMB) and the neutrino background. The last column of Table 5.1
contains previous estimates of the entropy in black holes, the CMB and neutrinos,
as well as several less significant components.
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Sections 5.2.1 – 5.2.7 below describe the data and assumptions used to calculate
our entropy densities (given in Column 2 of Table 5.1). Our entropy budget for
the observable universe (Column 3 of Table 5.1) is then found by multiplying
the entropy density by the volume of the observable universe Vobs,

Si = siVobs (5.4)

where si is the entropy density of component i. The volume of the observable
universe is (see Appendix)

Vobs = 43.2 ± 1.2 × 104 Glyr3

= 3.65 ± 0.10 × 1080 m3. (5.5)

5.2.1. Baryons

For a non-relativistic, non-degenerate gas the specific entropy (entropy per
baryon) is given by the Sakur-Tetrode equation (e.g. Basu and Lynden-Bell 1990)

(s/nb) =
k
nb

∑
i

ni ln
[
Zi(T)(2πmikT)

3
2 e

5
2 n−1

i h−3
]
, (5.6)

where i indexes particle types in the gas, ni is the ith particle type’s number
density, and Zi(T) is its internal partition function. Basu and Lynden-Bell (1990)
found specific entropies between 11 k and 21 k per baryon for main-sequence
stars of approximately solar mass. For components of the interstellar medium
(ISM) and intergalactic medium (IGM) they found specific entropies between
20 k (H2 in the ISM) and 143 k (ionized hydrogen in the IGM) per baryon.

The cosmic entropy density in stars s∗ can be estimated by multiplying the specific
entropy of stellar material by the cosmic number density of baryons in stars nb∗:

s∗ = (s/nb)∗nb∗ = (s/nb)∗
ρ∗
mp

= (s/nb)∗

[
3H2

8πG
Ω∗
mp

]
. (5.7)

Using the stellar cosmic density parameter Ω∗ = 0.0027 ± 0.0005 (Fukugita and
Peebles, 2004), and the range of specific entropies for main-sequence stars around
the solar mass (which dominate stellar mass), we find

s∗ = 0.26 ± 0.12 k m−3, (5.8)
S∗ = 9.5 ± 4.5 × 1080 k. (5.9)
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Similarly, the combined energy density for the ISM and IGM is Ωgas = 0.040±0.003
(Fukugita and Peebles, 2004), and by using the range of specific entropies for
ISM and IGM components, we find

sgas = 20 ± 15 k m−3, (5.10)
Sgas = 7.1 ± 5.6 × 1081 k. (5.11)

The uncertainties in Equations (5.9) and (5.11) are dominated by uncertainties in
the mass weighting of the specific entropies, but also include uncertainties in Ω∗,
Ωgas and the volume of the observable universe.

5.2.2. Photons

The CMB photons are the most significant non-black hole contributors to the
entropy of the observable universe. The distribution of CMB photons is thermal
(Mather et al., 1994) with a present temperature of Tγ = 2.725 ± 0.002 K (Mather
et al., 1999).

The entropy of the CMB is calculated using the equation for a black body (e.g.
Kolb and Turner (1990)),

sγ =
2π2

45
k4

c3~3 gγT3
γ (5.12)

= 1.478 ± 0.003 × 109 k m−3,

Sγ = 2.03 ± 0.15 × 1089 k, (5.13)

where gγ = 2 is the number of photon spin states. The uncertainty in Equation
(5.13) is dominated by uncertainty in the size of the observable universe.

The non-CMB photon contribution to the entropy budget (including starlight
and heat emitted by the ISM) is somewhat less, at around 1086k (Frautschi, 1982;
Bousso et al., 2007; Frampton et al., 2008).

5.2.3. Relic Neutrinos

The neutrino entropy cannot be calculated directly since the temperature of
cosmic neutrinos has not been measured. Standard treaties of the radiation era
(e.g. Kolb and Turner 1990; Peacock 1999) describe how the present temperature
(and entropy) of massless relic neutrinos can be calculated from the well known
CMB photon temperature. Since this background physics is required for Sections
5.2.4 and 5.2.5, we summarize it briefly here.
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A simplifying feature of the radiation era (at least at known energies <
∼ 1012eV)

is that the radiation fluid evolves adiabatically: the entropy density decreases
as the cube of the increasing scalefactor srad ∝ a−3. The evolution is adiabatic
because reaction rates in the fluid are faster than the expansion rate H of the
universe. It is convenient to write the entropy density as

srad =
2π2

45
k4

c3~3 g∗ST3
γ ∝ a−3 (5.14)

where g∗S is the number of relativistic degrees of freedom in the fluid (with
m < kT/c2) given approximately by

g∗S(T) ≈
∑

bosons, i

gi

(
Ti

Tγ

)3

+
∑

f ermions, j

7
8

g j

(
T j

Tγ

)3

. (5.15)

For photons alone, g∗S = gγ = 2, and thus Equation (5.14) becomes Equation
(5.12). For photons coupled to an electron-positron component, such as existed
before electron-positron annihilation, g∗S = gγ + 7

8 ge± = 2 + 7
84 = 11

2 .

As the universe expands, massive particles annihilate, heating the remaining
fluid. The effect on the photon temperature is quantified by inverting Equation
(5.14),

Tγ ∝ a−1g−1/3
∗S . (5.16)

The photon temperature decreases less quickly than a−1 because g∗S decreases
with time. Before electron-positron e± annihilation the temperature of the photons
was the same as that of the almost completely decoupled neutrinos. After e±

annihilation, heats only the photons, the two temperatures differ by a factor C,

Tν = C Tγ. (5.17)

A reasonable approximation C ≈ (4/11)1/3 is derived by assuming that only
photons were heated during e± annihilation, where 4/11 is the ratio of g∗S for
photons to g∗S for photons, electrons, and positrons.

Corrections are necessary at the 10−3 level because neutrinos had not completely
decoupled at e± annihilation (Gnedin and Gnedin, 1998). The neutrino entropy
density is computed assuming a thermal distribution with Tν = (4/11)1/3Tγ, and
we assign a 1% uncertainty.

sν =
2π2

45
k4

c3~3 gν
(7
8

)
T3
ν

= 1.411 ± 0.014 × 109 k m−3, (5.18)
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where gν = 6 (3 flavors, 2 spin states each). The total neutrino entropy in the
observable universe is then

Sν = 5.16 ± 0.14 × 1089 k (5.19)

with an uncertainty dominated by uncertainty in the volume of the observable
universe.

Neutrino oscillation experiments have demonstrated that neutrinos are massive
by measuring differences between the three neutrino mass eigenstates (Cleveland
et al., 1998; Adamson et al., 2008; Abe et al., 2008). At least two of the mass
eigenstates are heavier than ∼ 0.009 eV. Since this is heavier than their current
relativistic energy ( k

2 C Tγ = 0.0001 eV; computed under the assumption that
they are massless) at least two of the three masses are presently non-relativistic.

Expansion causes non-relativistic species to cool as a−2 instead of a−1, which
would result in a lower temperature for the neutrino background than suggested
by Equation (5.17). The entropy density (calculated in Equation 5.18) and entropy
(calculated in Equation 5.19) are unaffected by the transition to non-relativistic
cooling since the cosmic expansion of relativistic and non-relativistic gases are
both adiabatic processes (the comoving entropy is conserved, so in either case
s ∝ a−3).

We neglect a possible increase in neutrino entropy due to their infall into
gravitational potentials during structure formation. If large, this will need to be
considered in future work.

5.2.4. Relic Gravitons

A thermal background of gravitons is expected to exist, which decoupled from
the photon bath around the Planck time, and has been cooling as Tgrav ∝ a−1

since then. The photons cooled less quickly because they were heated by the
annihilation of heavy particle species (Equation 5.16). Thus we can relate the
current graviton temperature to the current photon temperature

Tgrav =

(
g∗S(t0)

g∗S(tplanck)

)1/3

Tγ, (5.20)

where g∗S(tplanck) is the number of relativistic degrees of freedom at the Planck
time and g∗S(t0) = 3.91 today (this is appropriate even in the case of massive
neutrinos because they decoupled from the photon bath while they were still
relativistic). Given the temperature of background gravitons, their entropy can

84



be calculated as

sgrav =
2π2

45
k4

c3~3 ggravT3
grav (5.21)

where ggrav = 2.

Figure 5.2 shows g∗S as a function of temperature. The function is well known
for temperatures below about 1012eV, but is not known at higher temperatures.
Previous estimates of the background graviton entropy have assumed g∗S(tplanck) ∼
g∗S(1012eV) = 106.75 (Frampton et al., 2008; Frampton and Kephart, 2008), but
this should be taken as a lower bound on g∗S(tplanck) yielding an upper bound
on Tgrav and sgrav.

To get a better idea of the range of possible graviton temperatures and entropies,
we have adopted three values for g∗S(tplanck). As a minimum likely value we
use g∗S = 200 (Figure 5.2, thick blue line), which includes the minimal set of
additional particles suggested by supersymmetry. As our middle value we use
g∗S = 350, corresponding to the linear extrapolation of g∗S in log(T) to the Planck
scale (Figure 5.2, gray line). And as a maximum likely value we use g∗S = 105,
corresponding to an exponential extrapolation (Figure 5.2, thin blue line).

The corresponding graviton temperatures today are (Equation 5.20)

Tgrav = 0.61+0.12
−0.52 K. (5.22)

Inserting this into Equation (5.21) we find the entropy in the relic graviton
background to be

sgrav = 1.7 × 107+0.2
−2.5 k m−3, (5.23)

Sgrav = 6.2 × 1087+0.2
−2.5 k. (5.24)

It is interesting to note the possibility of applying Equation (5.20) in reverse,
i.e., calculating the number of relativistic degrees of freedom at the Planck time
using future measurements of the graviton background temperature.

5.2.5. Dark Matter

The most compelling interpretation of dark matter is as a weakly interacting
superpartner (or weakly interacting massive particle, WIMP). According to this
idea, dark matter particles decoupled from the radiation background at some
energy above the particle mass.
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Figure 5.2 Number of relativistic degrees of freedom g∗S as a function of temperature, computed
using the prescription given by Coleman and Roos (2003). All the particles of the standard
model are relativistic at T >

∼ 1012 eV and g∗S(1012 eV) = 106.75. The value of g∗S is not known
above T ∼ 1012. To estimate plausible ranges of values, we extrapolate g∗S linearly (gray
line) and exponentially (thin blue line) in log(T). The minimum contribution to g∗S from
supersymmetric partners is shown (blue bar) and taken to indicate a minimum likely value
of g∗S at higher temperatures (thick blue line).
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If this interpretation is correct, the fraction of relativistic background entropy
in dark matter at the time dark matter decoupled tdm dec is determined by the
fraction of relativistic degrees of freedom that were associated with dark matter
at that time (see Equation 5.14).

sdm =
g∗S dm(tdm dec)

g∗S non−dm(tdm dec)
snon−dm rad (5.25)

This can be evaluated at dark matter decoupling, or any time thereafter, since
both sdm and snon−dm rad are adiabatic (∝ a−3).

We are unaware of any constraint on the number of superpartners that may
collectively constitute dark matter. The requirements that they are only weakly
interacting, and that they decouple at a temperature above their mass, are
probably only satisfied by a few (even one) species. Based on these arguments,
we assume g∗S dm(tdm dec) <∼ 20 and g∗S(tdm dec) >∼ 106.75 which yields the upper
limit

g∗S dm(tdm dec)
g∗S(tdm dec)

<
∼

1
5
. (5.26)

On the other hand there may be many more degrees of freedom than suggested
by minimal supersymmetry. By extrapolating g∗S exponentially beyond super-
symmetric scales (to 1015 eV), we find g∗S(tdm dec) <∼ 800. In the simplest case, dark
matter is a single scalar particle so g∗S dm(tdm dec) >∼ 1 and we take as a lower limit

g∗S dm(tdm dec)
g∗S non−dm(tdm dec)

>
∼

1
800

. (5.27)

Inserting this into Equation (5.25) at the present day gives

sdm = 5 × 107±1 k m−3, (5.28)

where we have used the estimated limits given in Equations (5.26) and (5.27) and
taken snon−dm rad to be the combined entropy of neutrinos and radiation today
(Equations 5.12 and 5.18). The corresponding estimate for the total dark matter
entropy in the observable universe is

Sdm = 2 × 1088±1 k. (5.29)

As with our calculated neutrino entropy, our estimates here carry the caveat
that we have not considered changes in the dark matter entropy associated with
gravitational structure formation.

87



5.2.6. Stellar Black Holes

In the top panel of Figure 5.3 we show the stellar initial mass function (IMF)
parameterized by

dninitial

d log(M)
∝

(
M
M�

)α+1

, (5.30)

with α = −1.35 at M < 0.5M� and α = −2.35+0.65
−0.35 at M ≥ 0.5M� (Elmegreen,

2007). We also show the present distribution of main-sequence stars, which is
proportional to the initial distribution for M <

∼ 1M�, but which is reduced by a
factor of (M/M�)−2.5 for heavier stars (Fukugita and Peebles, 2004).

dnpresent

d log(M)
=


dninitial

d log(M) , for M < 1M�

dninitial
d log(M)

(
M

M�

)−2.5
, for M ≥ 1M�

. (5.31)

The initial and present distributions are normalized using the present cosmic
density of stars, Ω∗ = 0.0027 ± 0.0005 (Fukugita and Peebles, 2004).

The yellow fill in the top panel represents stars of mass 1M�
<
∼ M <

∼ 8M�, which
died leaving white dwarf remnants of mass M <

∼ 1.4M� (yellow fill, bottom
panel). The blue fill represents stars of mass 8M�

<
∼ M <

∼ 25M�, which died
and left neutron star remnants of mass 1.4M�

<
∼ M <

∼ 2.5M�. The light gray area
represents stars of mass 25M�

<
∼ M <

∼ 42M� which became black holes of mass
2.5M�

<
∼ M <

∼ 15M� via supernovae (here we use the simplistic final-initial mass
function of Fryer and Kalogera (2001)). Stars larger than ∼ 42M� collapse directly
to black holes, without supernovae, and therefore retain most of their mass (dark
gray regions; Fryer and Kalogera 2001; Heger et al. 2005).

Integrating Equation (5.3) over stellar black holes in the range M ≤ 15M� (the
light gray fill in the bottom panel of Figure 5.3) we find

sSBH (M<15M�) = 1.6 × 1017+0.6
−1.2 k m−3, (5.32)

SSBH (M<15M�) = 5.9 × 1097+0.6
−1.2 k, (5.33)

which is comparable to previous estimates of the stellar black hole entropy (see
Table 5.1). Our uncertainty is dominated by uncertainty in the slope of the IMF,
but also includes uncertainty in the normalization of the mass functions and
uncertainty in the volume of the observable universe.

If the IMF extends beyond M >
∼ 42M� as in Figure 5.3, then these higher mass

black holes (the dark gray fill in the bottom panel of Figure 5.3) may contain
more entropy than black holes of mass M < 15 M� (Equation 5.32). For example,
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Figure 5.3 Progenitors in the IMF (top panel) evolve into the distribution of remnants in the
bottom panel. The shape of the present main-sequence mass function differs from that
of the IMF (top panel) by the stars that have died leaving white dwarfs (yellow), neutron
stars (blue), and black holes (light and dark gray). The present distribution of remnants is
shown in the bottom panel. Black holes in the range 2.5M� <∼ M <

∼ 15M� (light gray) have
been observationally confirmed. They form from progenitors in the range 25M� <∼ M ∼ 42M�
via core collapse supernova and fallback, and we calculate their entropy to be 5.9 × 1097+0.6

−1.2 k.
Progenitors above about 42 M� may evolve directly to black holes without significant loss
of mass (dark gray) and may carry much more entropy, but this population has not been
observed. The green curve, whose axis is on the right, shows the mass distribution of stellar
black hole entropies in the observable universe.

89



if the Salpeter IMF is reliable to M = 140 M� (the Eddington limit and the edge
of Figure 5.3), then black holes in the mass range 42 - 140 M� would contribute
about 3.1 × 1099+0.8

1.6 k to the entropy of the observable universe. Significantly less
is known about this potential population, and should be considered a tentative
contribution in Table 5.1.

5.2.7. Supermassive Black Holes

Previous estimates of the SMBH entropy (Penrose, 2004; Frampton et al., 2008;
Frampton and Kephart, 2008) have assumed a typical SMBH mass and a number
density and yield SSMBH = 10101

− 10103k. Below we use the SMBH mass function
as measured recently by Graham et al. (2007). Assuming a three-parameter
Schechter function

dn
d log(M)

= φ∗

( M
M∗

)α+1

exp
[
1 −

( M
M∗

)]
(5.34)

(number density per logarithmic mass interval) they find φ∗ = 0.0016±0.0004 Mpc−3,
M∗ = 2.9 ± 0.7 × 108 M�, and α = −0.30 ± 0.04. The data and best-fit model are
shown in black in Figure 5.4.

We calculate the SMBH entropy density by integrating Equation (5.3) over the
SMBH mass function,

s =
4πkG

c~

∫
M2

(
dn

d log(M)

)
d log(M). (5.35)

The integrand is plotted using a green line in Figure 5.4 showing that the
contributions to SMBH entropy are primarily due to black holes around ∼ 109M�.
The SMBH entropy is found to be

sSMBH = 8.4+8.2
−4.7 × 1023 k m−3, (5.36)

SSMBH = 3.1+3.0
−1.7 × 10104 k. (5.37)

The uncertainty here includes uncertainties in the SMBH mass function and
uncertainties in the volume of the observable universe. This is at least an order
of magnitude larger than previous estimates (see Table 5.1). The reason for the
difference is that the (Graham et al., 2007) SMBH mass function contains larger
black holes than assumed in previous estimates.

Frampton (2009a,b) has suggested that intermediate mass black holes in galactic
halos may contain more entropy than SMBHs in galactic cores. For example,
according to the massive astrophysical compact halo object (MACHO) explanation
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of dark matter, intermediate mass black holes in the mass range 102 - 105 M�

may constitute dark matter. Assuming 105 M� black holes, these objects would
contribute up to 10106 k to the entropy of the observable universe (Frampton,
2009b). Whether or not this is so depends on the number density and mass
distribution of this population. Figure 5.5 combines Figures 5.3 and 5.4 and
shows what intermediate black hole number densities would be required.
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Figure 5.4 The black curve, whose axis is on the left, is the SMBH mass function from Graham
et al. (2007), i.e., the number of supermassive black holes per Mpc3 per logarithmic mass
interval. The green curve, whose axis is on the right, shows the mass distribution of SMBH
entropies in the observable universe.
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Figure 5.5 Whether or not the total black hole entropy is dominated by SMBHs depends on
the yet-unquantified number of intermediate mass black holes.
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5.3. The Entropy of the CEH and its Interior

In this section we calculate the entropy budget for scheme 2 (refer to discussion
in Section 5.1.1). Scheme 2 differs from scheme 1 in two ways: first, along with
the components previously considered (and listed in Table 5.1), here we consider
the CEH as an additional entropy component; and second, the volume of interest
is that within the event horizon not the particle horizon (or observable universe).

The proper distance to the CEH is generally time-dependent, increasing when the
universe is dominated by an energy component with an equation of state w > −1
(radiation and matter) and remaining constant when the universe is dark energy
dominated (assuming a cosmological constant, w = −1). Since our universe is
presently entering dark energy domination, the growth of the event horizon has
slowed, and it is almost as large now as it will ever become (bottom panel of
Figure 5.1). In the Appendix, we calculate the present radius and volume of the
CEH

RCEH = 15.7 ± 0.4 Glyr, (5.38)

VCEH = 1.62 ± 0.12 × 104 Glyr3

= 1.37 ± 0.10 × 1079 m3. (5.39)

We also calculate the present entropy of the CEH (following Gibbons and
Hawking 1977),

SCEH =
kc3

G~
A
4

=
kc3

G~
πR2

CEH (5.40)

= 2.6 ± 0.3 × 10122 k.

Entropies of the various components within the CEH are calculated using the
entropy densities si from Section 5.2:

Si = siVCEH (5.41)

Table 5.2 shows that the cosmic event horizon contributes almost 20 orders of
magnitude more entropy than the next largest contributor, supermassive black
holes.
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Component Entropy S [k]
Cosmic Event Horizon 2.6 ± 0.3 × 10122

SMBHs 1.2+1.1
−0.7 × 10103

Stellar BHs (2.5 − 15 M�) 2.2 × 1096+0.6
−1.2

Photons 2.03 ± 0.15 × 1088

Relic Neutrinos 1.93 ± 0.15 × 1088

WIMP Dark Matter 6 × 1086±1

Relic Gravitons 2.3 × 1086+0.2
−3.1

ISM and IGM 2.7 ± 2.1 × 1080

Stars 3.5 ± 1.7 × 1078

Total 2.6 ± 0.3 × 10122

Tentative Components:
Massive Halo BHs (105 M�) 10104

Stellar BHs (42 − 140 M�) 1.2 × 1098+0.8
−1.6

Table 5.2 This budget is dominated by the cosmic event horizon entropy. While the CEH
entropy should be considered as an additional component in scheme 2, it also corresponds to
the holographic bound (’t Hooft, 1993) on the possible entropy of the other components and
may represent a significant overestimate. Massive halo black holes at 105 M� and stellar black
holes in the range 42 − 140 M� are included tentatively since their existence is speculative.
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5.4. Discussion

The second law of thermodynamics holds that the entropy of an isolated system
increases or remains constant, but does not decrease. This has been applied
to the large-scale universe in at least two ways (Equation 5.1 and 5.2). The
first scheme requires the entropy in a comoving volume of the universe to not
decrease. The second scheme requires the entropy of matter contained within
the event horizon, plus the entropy of the event horizon, to not decrease.

We have calculated improved estimates of the current entropy budget under
scheme 1 (normalized to the current observable universe) and scheme 2. These
are given in Tables 5.1 and 5.2, respectively.

The entropy of dark matter has not been calculated previously. We find that
dark matter contributes 1088±1 k to the entropy of the observable universe. We
note that the neutrino and dark matter estimates do not include an increase due
to their infall into gravitational potentials during structure formation. It is not
clear to us a priori whether this non-inclusion is significant, but it may be since
both components are presently non-relativistic. This should be investigated in
future work.

Previous estimates of the relic graviton entropy have assumed that only the
known particles participate in the relativistic fluid of the early universe at
t >∼ tplanck. In terms of the number of relativistic degrees of freedom, this means
g∗S → 106.75 at high temperatures. However, additional particles are expected
to exist, and thus g∗S is expected to become larger as t→ tplanck. In the present
work, we have calculated the relic graviton entropy corresponding to three high-
energy extrapolations of g∗S (constant, linear growth and exponential growth)
and reported the corresponding graviton temperatures and entropies.

In this paper, we have computed the entropy budget of the observable universe
today Sobs(t = t0). Figure 5.6 illustrates the evolution of the entropy budget under
scheme 1, i.e., the entropy in a comoving volume (normalized to the current
observable universe). For simplicity, we have included only the most important
components.

At the far-left of the figure, we show a brief period of inflation. During this
period all of the energy is in the inflaton (Guth, 1981; Linde, 1982), which has
very few degrees of freedom and low entropy (blue fill; Linde 2009; Steinhardt
2008). Inflation ends with a period of reheating somewhere between the Planck
scale (10−45s) and the GUT scale (10−35s), during which the inflaton’s energy is
transferred into a relativistic fluid (yellow fill). During reheating, the entropy
increases by many orders of magnitude. After reheating, the constitution of the
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relativistic fluid continues to change, but the changes occur reversibly and do
not increase the entropy.

After a few hundred million years (∼ 1016s), the first stars form from collapsing
clouds of neutral hydrogen and helium. Shortly thereafter the first black holes
form. The entropy in stellar black holes (light gray) and SMBHs (dark gray)
increases rapidly during galactic evolution. The budget given in Table 5.1 is a
snapshot of the entropies at the present time (4.3×1017s). Over the next 1026s, the
growth of structures larger than about 1014 M� will be halted by the acceleration
of the universe. Galaxies within superclusters will merge and objects in the
outer limits of these objects will be ejected. The final masses of SMBHs will
be ∼ 1010M� (Adams and Laughlin, 1997) with the entropy dominated by those
with M ∼ 1012M�.

Stellar black holes will evaporate away into Hawking radiation in about 1080s and
SMBHs will follow in 10110s. The decrease in black hole entropy is accompanied
by a compensating increase in radiation entropy. The thick black line in Figure
5.6 represents the radiation entropy growing as black holes evaporate. The
asymptotic future of the entropy budget, under scheme 1, will be radiation
dominated.

Figure 5.7 illustrates the evolution of the entropy budget under scheme 2, i.e.,
the entropy within the CEH, plus the entropy of the CEH.

Whereas in scheme 1 we integrate over a constant comoving volume, here the
relevant volume is the event horizon. The event horizon is discussed in some
detail in the Appendix. During radiation domination, the comoving radius of the
CEH is approximately constant (the proper distance grows as RCEH ∝ a) and in the
dark energy dominated future, it is a constant proper distance (RCEH = constant).
The few logarithmic decades around the present time cannot be described well
by either of these.

Since the event horizon has been approximately comoving in the past, the left
half of Figure 5.7 is almost the same as in Figure 5.6 except that we have included
the event horizon entropy (green fill). The event horizon entropy dominates
this budget from about 10−16s.

After dark energy domination sets in, the CEH becomes a constant proper
distance. The expansion of the universe causes comoving objects to recede
beyond the CEH. On average, the number of galaxies, black holes, photons etc.
within our CEH decreases as a−3. The stellar and SMBH entropy contained
within the CEH decreases accordingly (decreasing gray filled regions).

The decreasing black hole entropy (as well as other components not shown)
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is compensated by the asymptotically growing CEH entropy (demonstrated
explicitly for a range of scenarios in Davis et al. 2003), and thus the second law
of thermodynamics is satisfied. See Egan and Lineweaver (2010b, in preparation)
for further discussion of the time-dependence of the entropy of the universe.
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Figure 5.6 The entropy in a comoving volume (normalized to the present observable universe).
This figure illustrates the time-dependence of the scheme 1 entropy budget. N.B. 1010100

= 1
googolplex.
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Figure 5.7 Entropy of matter within the CEH, and the entropy of the cosmic event horizon.
This figure illustrates the time dependence of the scheme 2 entropy budget. Note: the
horizontal axis is shorter than in Figure 5.6.
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Appendix: The observable universe and the cosmic
event horizon

Here we calculate the radius and volume of the observable universe (for use in
Section 5.2); and we calculate the radius, volume, and entropy of the CEH (for
use in Section 5.3). We use numerical methods to track the propagation of errors
from the cosmological parameters.

The radius of the observable universe (or particle horizon) is

Robs = a(t)
∫ t

t′=0

c
a(t′)

dt′. (5.42)

Here a(t) is the time-dependent scalefactor of the universe given by the Friedmann
equation for a flat cosmology

da
dt

=

√
Ωr

a2 +
Ωm

a
+

ΩΛ

a−2 . (5.43)

Hubble’s constant and the matter density parameter are taken from Seljak et al.
(2006): h = H/100 km s−1 Mpc−1 = 0.705 ± 0.013, ωm = Ωmh2 = 0.136 ± 0.003. The
radiation density is calculated from the observed CMB temperature, TCMB =

2.725 ± 0.002 K (Mather et al., 1999), using Ωr = 8πG
3H2

π2k4T4

15c5~3 . The vacuum energy
density parameter is determined by flatness, ΩΛ = 1 −Ωr −Ωm.

A distribution of Robs values is built up by repeatedly evaluating Equation (5.42)
at the present time (defined by a(t0) = 1) using cosmological parameters randomly
selected from the allowed region of h − ωm − TCMB parameter space (assuming
uncorrelated Gaussian errors in these parameters). We find

Robs = 46.9 ± 0.4 Glyr (5.44)

with an approximately Gaussian distribution. The quoted confidence interval
here, and elsewhere in this Appendix, is 1σ. The volume of the observable
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universe Vobs is calculated using the normal formula for the volume of a sphere.

Vobs = 43.2 ± 1.2 × 104 Glyr3

= 3.65 ± 0.10 × 1080 m3 (5.45)

See Figure 5.8. Uncertainty in Robs and Vobs is predominantly due to uncertainty
in ωm however h also makes a non-negligible contribution.

The radius of the CEH at time t is given by integrating along a photon’s world
line from the time t to the infinite future.

RCEH = a(tnow)
∫
∞

t=tnow

c
a(t)

dt (5.46)

This integral is finite because the future of the universe is dark energy dominated.
Using the same methods as for the observable universe, we find the present
radius and volume of the CEH to be

RCEH = 15.7 ± 0.4 Glyr, (5.47)

and

VCEH = 1.62 ± 0.12 × 104 Glyr3,

= 1.37 ± 0.10 × 1079 m3. (5.48)

The entropy of the CEH is calculated using the Bekenstein-Hawking horizon
entropy equation as suggested by Gibbons and Hawking (1977).

SCEH =
kc3

G~
A
4

=
kc3

G~
πR2

CEH

= 2.6 ± 0.3 × 10122 k (5.49)

Uncertainty in the CEH radius, volume, and entropy are dominated by uncer-
tainties in Hubble’s constant (Figure 5.9).

The CEH monotonically increases, asymptoting to a constant radius and entropy
slightly larger than its current value (see Figure 5.10). We calculate the asymptotic
radius, volume, and entropy to be

RCEH(t→∞) = 16.4 ± 0.4 Glyr
= 1.55 ± 0.04 × 1026 m (5.50)

VCEH(t→∞) = 1.84 ± 0.15 × 104 Glyr3

= 1.56 ± 0.13 × 1079 m3 (5.51)

SCEH(t→∞) = 2.88 ± 0.16 × 10122 k. (5.52)
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Figure 5.8 Eight hundred realizations of Vobs and VCEH indicate the volume of the observable
universe is 43.2± 1.2× 104 Glyr3 (horizontal axis) and the volume of the cosmic event horizon
is VCEH = 1.62 ± 0.12 × 104 Glyr3 (vertical axis). We note that there is only a weak correlation
between uncertainties in the two volumes.
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Figure 5.9 We find SCEH = 2.6±0.3×10122 k, in agreement with previous estimates SCEH ∼ 10122 k
(Bousso et al., 2007). Uncertainties in SCEH come from uncertainties in RCEH, which are almost
exclusively due to uncertainties in h.
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Figure 5.10 Proper distance to the event horizon is shown as a function of time. The vertical
gray line represents the present age of the universe (and its width, the uncertainty in the
present age). During dark energy domination, the proper radius, proper volume, and
entropy of the CEH will monotonically increase, asymptoting to a constant.
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CHAPTER 6

HOW HIGH COULD THE ENTROPY
BE AND WILL THE UNIVERSE

END IN A HEAT DEATH?

If we should stay silent,
if fear should win our hearts,

our light will have long diminished,
before it reaches the farthest star.

- VNV Nation, “The Farthest Star”

6.1. Introduction

The increase of entropy (and use of free energy) drives all dissipative physical
processes in the universe including gravitational clustering, accretion disks and
supernovae, stellar fusion, terrestrial weather, chemical reactions, geological
processes and terrestrial-planet-bound biology (Frautschi, 1982; Lineweaver and
Egan, 2008).

The long-term sustainability of dissipative processes (including life) depends
on the availability of free energy in the future. If, for any reason, the entropy
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of the universe Suni achieves a value that cannot be further increased, then the
universe enters a heat death (see figure 6.1). This idea motivates the exploration
of potential entropy growth and entropy limits.

Frampton et al. (2008); Frampton and Kephart (2008) recently estimated that
the present entropy of the observable Universe is 10102 k − 10103 k and that the
maximum entropy the universe could have was Smax ∼ 10123 k. Their maximum
entropy was calculated by applying the holographic bound (’t Hooft, 1993;
Susskind, 1995) to the present volume of the observable Unvierse. That the
increase of entropy has not yet been capped by some limiting value is the reason
that dissipative processes are ongoing and that life can exist.

However there remains some ambiguity about how to best define the maximum
entropy Smax and whether or not the entropy of the Universe Suni will reach Smax.
Figure (6.2) shows several illustrations depicting the relationship between Suni

and Smax that have appeared in the literature, books and popular science over
the past three decades.

Adams and Laughlin (1997) provide an excellent overview of the processes which,
according to our current understanding, will dominate the future evolution of
the universe, but in their brief discussion of the thermodynamic fate of a ΛCDM
universe (now the standard model of our Universe) they ultimately leave the
question of whether our Universe will reach equilibrium, and end in a heat
death, open.

More recently (e.g. Bousso et al. 2007; Mersini-Houghton and Adams 2008), the
maximum entropy of a de Sitter future has been discussed in the context of
anthropic explanations for the low density of the dark energy (the so-called
cosmological constant problem), but several issues remain to be clarified.

Below are a number of considerations we have identified to help understand
disagreement in the literature. We resolve some, and some deserve further
discussion.

1. Theoretically motivated Smax: If Smax is defined using a theoretically mo-
tivated entropy bound such as the Bekenstein bound (Bekenstein, 1981)
or the holographic bound (’t Hooft, 1993; Susskind, 1995) (both of which
apply to weakly gravitating systems) or using the more recent covariant en-
tropy bound Bousso (1999, 2002) (which may apply to strongly gravitating
systems), then the result depends on which of these is used.

2. Should we condition on the available energy? In a spherical system of
radius R which contains mass M << Rc2

2G , the entropy is maximized by
converting that energy into massless radiation rather than a black hole
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(see Page (1981)). The resulting entropy is S = M
T << R3/2 (in Planck units

and dropping constants of order 1) and is much less than the holographic
bound S << R2 (same conventions). This example illustrates that even
while theoretically motivated bounds may hold, they are not always the
best choice for Smax. If our system is constrained by the amount of energy
that is available, then a lower Smax may apply.

3. Should we condition on the equation of state? The energy in a comoving
volume ρχ is not conserved in an expanding universe (see e.g. (Carroll,
2004)). Generally ρχ = ρa3

∝ a−3w where w is the equation of state, with
w = 1/3 for radiation, w = 0 for matter and w = −1 for dark energy.
The amount of energy available at a future time does depend on what
form (what w) the energy is stored in. The question of the future of
entropy production of the universe therefore depends on whether or not
we suppose that energy can be transferred between different equations
of state. Harrison (1995) pointed out that energy could be mined from
the universe by tethering distant galaxies. A network of tethered galaxies
has a negative pressure and an equation of state w < 0 and is among the
scenarios we may be interested in considering in an analysis of possible
future entropy production.

4. Normalization volume: Whether the entropy of the universe is increasing
or not can depend on the definition of “the Universe”. For example, while
the entropy in a comoving volume is constant during adiabatic expansion,
the entropy in the observable universe may grow due to the growth of the
particle horizon (which bounds the observable universe).

5. How efficiently can energy be collected? If dissipative processes require
the collection of matter, then the transport costs (energy and entropy) need
to be included in the calculations.

6. Other possible constraints: When asking what the entropy of the universe
could be, one is suggesting a universe which is different to the real universe,
but has not specified how it is different. Some of the above points, such as
“Should we condition on the available energy?” and “Should we condition
on the equation of state?” are examples of aspects which are not clearly
defined, but there may also be other, more subtle, issues. For example,
Frautschi (1982) evaluates Smax during the radiation era by supposing the
creation of a large black hole from radiation, but given that mechanisms
for this did not exist, the available free energy so calculated have little to
do with reality, and may not be of interest.

In the present work we assume an FRW expanding universe with the concordance
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ΛCDM parameter values, h0 = 0.71, Ωm = 0.27 and ΩDE = 0.73 (Seljak et al.,
2006).

When we say “the entropy of the universe, Suni” we mean the entropy in the
sphere of comoving radius 46 Glyr that is now the observable universe. Since the
particle horizon grows in comoving coordinates, our 46 Glyr comoving sphere
was larger than the observable universe in the past and will not include the
whole observable universe in the future.

Our aim is to investigate the issues we have listed in this introduction, and others
that may arise.

In Section 6.2 we evaluate various entropy bounds Smax that have been proposed
in the literature. By applying these bounds on our chosen volume, using a
consistent cosmology, we gain some insight into their differences and similarities.
In Section 6.3 we explore a natural definition of Smax as the entropy at which
the universe has zero free energy F given the available energy U and exhaust
temperatures Texh. The conclusions of these preliminary investigations are also
given in Section 6.3.
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Figure 6.1 Whether the Universe eventually achieves maximum entropy depends on the time
dependence of the maximum entropy Smax and the actual entropy of the Universe, Suni. There
is some ambiguity about how to best define Smax.
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Figure 6.2 The figures in the left column are, starting at the top, from Frautschi (1982), Frautschi
(1988), Barrow (1994) and Layzer (2009) and show Smax growing indefinitely (and faster than
Suni). In these figures the universe does not end in a heat death and free energy is always
available to drive dissipative processes (including life). The figures in the right column
are, starting at the top, from Davies (1994), Thomas (2009) (depicting the description given
by Penrose (2004)) and Lineweaver and Egan (2008). They show Smax as a constant, or
asymptoting to a constant, which is eventually reached by the actual entropy of the universe
Smax. The future depicted in these figures is very different to those in the left column: here
the universe runs out of free energy and all dissipative processes cease. The goal of this
work is to understand the differences between these two points of view and help lead to a
resolution of the fate of life in the Universe.
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6.2. Different Versions of Smax

6.2.1. The Holographic Bound

The most discussed entropy bound is the holographic bound (’t Hooft, 1993;
Susskind, 1995): the entropy within a sphere of radius R will not exceed that of
a black hole of radius R,

Ssphere R ≤ SHol−Bound =
kc3

G~
πR2. (6.1)

For a comoving volume of physical radius R = χa the holographic bound grows
as the square of the cosmic scalefactor,

SHol−Bound =
kc3

G~
πχ2a2, (6.2)

and becomes exponentially large in the future.

In figure 6.3 the holographic bound is applied to a sphere of comoving radius
46 Glyr (the purple line). The actual entropy in the comoving sphere violates the
holographic bound during part the radiation era, as shown in the figure. This
occurs because the entropy density s of the Universe is approximately homogen-
ous on large scales. The entropy in a volume V is S ∝ V ∝ length3 whereas the
holographic bound grows as the surface area of the volume SHol−Bound ∝ length2

and for a large enough volume S > SHol−Bound. This violation has been used by
Bousso (2002) to motivate a covariant form of the holographic bound. At least in
its original form, the holographic bound does not deliver a suitable maximum
entropy Smax for the universe.

6.2.2. The Bekenstein Bound

Historically preceding the holographic bound, the Bekenstein bound (Bekenstein,
1981) is the result of a gedankenexperiment in which a package of energy E,
radius R and entropy S is deposited into a black hole. The bound,

SBek−Bound = 2π
k
~c

RE, (6.3)

is required by the second law: the entropy S lost into the black hole must not be
larger than the increase in the horizon entropy of the black hole. Several papers
have studied the related effect whereby entropy-containing-matter recedes across

113



the cosmic event horizon to extract similar bounds on the entropy density of
matter (Davies, 1987; Bousso, 2001).

The plausibility of the Bekenstein bound was confirmed for numerous weakly
gravitating systems (Bekenstein, 2005), but the bound is now known to fail for
some gravitationally unstable systems (e.g. Bousso 2002).

In the context of the flat-FRW universe,

SBek−Bound = 2π
k
~c

(χa)
(
ρ

4πχ3a3

3

)
=

8π2

3
k
~c
χ4ρa4. (6.4)

The Bekenstein bound is constant during the radiation era (when ρ ∝ a−4) and
increases during the matter and de Sitter eras (ρ ∝ a−3 and ρ = const respectively).
Compared to the Holographic bound, the Bekenstein bound is weaker when
applied to regions larger than the Hubble sphere, and stronger when applied to
regions smaller than the Hubble sphere. Notice that the Bekenstein bound is not
violated in figure 6.3 (the green line).

6.2.3. The Covariant Entropy Bound

A covariant formulation of the Holographic bound was advanced by Bousso
(1999): the entropy S on convergent light-sheets L from a closed surface B will
not exceed 1

4 the area of B,

S[L(B)] ≤
kc3

G~
A(B)

4
. (6.5)

In flat spacetime convergent light-sheets from a closed surface B cover the entire
interior of B and the covariant entropy bound (CEB) is the same as the original
holographic bound: the entropy interior to B cannot exceed 1

4 the area of B. In
general spacetimes the convergent light-sheets may not cover the interior of B.
Specifically, the light sheets may be terminated by a singularity (such as the big
bang) or they may stop converging and start to diverge (in which case they are
truncated). In both of these cases the light sheets only cover part of the interior
of B and the CEB is weaker than the corresponding holographic bound.

We calculate the covariant entropy bound in an expanding, flat, FRW universe
by choosing the surface B and light-sheet L such that the entropy density bound
on the light-sheets is strongest (following the prescription given in Bousso
(1999)). We find that the strongest bound on the comoving entropy density
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comes from the past-outgoing lightsheet of a closed spherical surface B with a
radius infinitessimaly larger than c/H. In this case the comoving entropy density
is limited to

sχ ceb ≤
kc2

G~
1

4η + 4η2H +
4η3H2

3

(6.6)

where η ≡
∫ t

0
dt

a(t) is the conformal time. The dark blue line in figure 6.4 shows
this bound applied to a sphere of comoving radius 46 Glyr, i.e.

Sceb = sχ ceb
4π(46 Glyr)3

3
. (6.7)

The bound is saturated by the entropy of radiation fields at the Planck time,
increases during radiation and matter domination, and asymptotes to a constant
during the de Sitter future,

sχ∞ ≤
kc2

G~
3

4η3
∞H2

∞

(6.8)

≤ 4.7 × 1018 J K−1 m−3.

What Bousso has done is to introduce causal limitations to the regions on which
the holographic bound can be applied, and intriguingly this seems to prevent
the bound from being violated (at least in the cases studied in Bousso (1999,
2001) and in the concordance FRW universe here).

6.2.4. Frautschi’s Maximum Entropy

Frautschi (1982) identifies the maximum entropy inside a causal region (particle
horizon) as the entropy produced by the collection of all matter into a single
black hole.

Following Frautschi (1982), the mass available in any causal region for the
formation of the black hole is

Mmax BH = ρ
4π
3
χ3

PHa3 (6.9)

where χPH is the comoving radius of the particle horizon. The corresponding
entropy is

Smax BH =
4πkG

c~

[
ρ

4π
3
χ3

PHa3
]2

=
64π3kG

9c~
ρ2χ6

PHa6 (6.10)
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We are interested in the total entropy in a comoving volume of radius 46 Glyrs.
In the early universe this comoving volume contains many adjacent particle
horizons, each with potentially S = Smax BH. The corresponding maximum entropy
for a comoving volume is thus

SFrautschi =
64π3kG

9c~
ρ2χ6

PHa6 χ
3

χ3
PH

=
64π3kG

9c~
χ3ρ2χ3

PHa6 (6.11)

The brown line in figure 6.4 applies this bound to a sphere of comoving radius
46 Glyr. During radiation domination ρ ∝ a−4 and χPH ∝ a so the limit on sχ
grows as a. During matter domination ρ ∝ a−3 and χPH ∝ a1/2 so the limit on
sχ grows as a3/2. During vacuum domination (but assuming black holes cannot
be made from dark energy), ρ ∝ a−3 and χPH ∝ constant so the limit on sχ is
∝ constant.

The possibility of limited gravitational clustering was acknowledged by Frautschi
(1982), but in the closed cosmology of the day his work on Smax led him and
others to favor increasingly instability. The same idea, as presented here with
updated cosmology, now predicts stability and a constant smax BH.

Note that the qualitative future of smax BH depends strongly on whether or not
black holes can be made from dark energy. If we include the dark energy, then
ρ ∝ constant and χPH ∝ constant so the limit on sχ grows as a6 (not shown in
figure 6.4).

Since black holes may radiate via the Hawking process they do not generally
represent the maximum entropy state Page and McKee (1981); Frautschi (1982),
i.e. it may be the case that Frautschi’s bound is not only attainable (it is that
by construction), but in sufficiently empty universes it will be surpassed by the
evaporation of black holes. This is explored in the next section.

We note that Frautschi’s idea may be unreliable in recent times. After matter
domination, the black holes suggested in equation 6.9 have radii larger than
the Hubble sphere and are not Schwarzschild black holes. Further work on
the interaction between large black holes and the FRW universe is needed to
understand the entropy in such situations.

6.2.5. Page’s Evaporated Matter

Stellar black holes (with masses ∼ 4M�) and SMBHs at the center of galaxies
(with masses ∼ 107M�) emit Hawking radiation with characteristic temperatures
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of 10−8 K and 10−14 K respectively. Both these temperatures are far below that
of the present CMB (2.725 K) and consequently both classes of BHs currently
absorb more radiation than they emit. As the universe is starting to grow at an
exponential rate, the CMB will be quickly redshifted below the temperatures of
these black holes. 10−8 K should come when the universe is 330 Gyrs old and
10−14 K when it is 550 Gyrs.

By the time black holes stop growing by accretion, the background temperature
of the universe will be lower than the temperature of any black holes. They
will begin to evaporate. The formation of cluster-sized SMBHs up to 1012M�

is expected (see e.g. (Frampton and Kephart, 2008)). Subsequent evolution will
depend on the Hawking process. Black holes this large will have temperatures
of 10−19 K, which will be hotter than the background after the universe is just
730 Gyrs old.

It may be possible in principle to transmute matter in the universe into radiation
via black hole evaporation. In principle this could be done locally everywhere, in
an arbitrarily short time, by using sufficiently small black holes. After evaporation,
further entropy could be produced by re-thermalizing the Hawking radiation
(e.g. by scattering off trace particles). The immediate transmutation and re-
thermalization of all radiation, baryons and dark matter would result in a new
blackbody background with temperature

Tγ =

[
15~3c5

π2k4 (ρr + ρm)
] 1

4

, (6.12)

and entropy
Sγ
V

=
4π2k4

45~3c3 T3
γ

=
4
3

[
π2k4c3

15~3

] 1
4

(ρr + ρm)
3
4 (6.13)

This was identified by Page and McKee (1981) as an upper limit to the entropy
of the universe. Since (ρr + ρm) decreases less quickly than a−4 more entropy is
produced per comoving volume if the transmutation and re-thermalization is
done later rather than sooner. Page and McKee (1981) suggested that the entropy
in a comoving region of the universe could be made arbitrarily large in this way.

The orange line in figure 6.4 shows the entropy produced by the immediate
transmutation and re-thermalization of all radiation, baryons and dark matter in
the universe. The current maximum entropy of the universe calculated in this
way is

Sγ = 9.2 × 1092k. (6.14)
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This is much lower than the actual current entropy (3.1+3.0
−1.7 × 10104k; Egan and

Lineweaver 2010a). This is because BHs and SMBHs are much colder than the
CMB; in environments as hot as the present universe BHs and SMBHs do not
spontaneously evaporate.

6.2.6. Page’s Evaporated Matter - de Sitter Limited

A minor adjustment of Page’s idea is required in the presence of a de Sitter
cosmic horizon. At t ∼ 1000Gyrs the temperature in equation 6.12 falls below
the de Sitter temperature TdeS. However, the de Sitter radiation would prevent
any (re-)emission of radiation at temperatures lower than TdeS.

Thus the final minimum temperature of the evaporated black hole radiation is

Tγ = Max

[15~3c3

π2k4 (ρr + ρm)
] 1

4

,TdeS

 , (6.15)

and the entropy density is

Sγ
V

= Min

4
3

[
π2k4

15~3c3

] 1
4

(ρr + ρm)
3
4 ,

4
3
ρr + ρm

TdeS
c2

 . (6.16)

Figure 6.4 shows this entropy bound applied to a sphere of comoving radius
46 Glyr (the dotted orange line). Since the density (ρr + ρm) tends to decay as a−3

in late times, the maximum entropy in a comoving volume tends to a constant.
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Figure 6.3 Two versions of Smax: the holographic bound and the Bekenstein bound. The actual
entropy history of the universe from Egan and Lineweaver (2010a) is plotted in black. The
holographic bound is violated by the actual entropy history of the universe during the
radiation epoch. We shade regions above the GUT temperature, where the evolution of the
universe (and its entropy) becomes more speculative.
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Figure 6.4 More versions of Smax: the covariant entropy bound, Frautschi’s maximum entropy
and Page’s evaporated matter entropy in orange with (solid) and without (dotted) consideration
for the de Sitter temperature. The actual entropy of the universe is plotted in black. Page’s
evaporated matter entropy is presently exceeded by the actual entropy history of the universe.
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6.3. Discussion

The definition of “the universe” as a comoving volume is a practical answer to
issue 4. We have not checked whether using this definition reveals any more
or less than if we had defined the universe to be the region within the particle
horizon (i.e. the time-dependent observable universe), or the event horizon.

Our interest in the entropy history is primarily driven by the question of the
long-term sustainability of dissipative processes including life. These processes
depend on the availability of free energy (not energy). Dissipative processes
deplete free energy by degrading an amount of high-grade (low entropy) energy
into an equivalent amount of low-grade (high entropy) energy. As an example
of this, dissipative weather action diffuses high-grade energy received from the
Sun (∼ 6000K photons) into low-grade energy which is re-transmitted to space
(20 times as many photons at ∼ 300K) (Lineweaver and Egan, 2008).

6.3.1. Free Energy and an Smax Defined by Zero Free Energy

Consider a system with total energy U and entropy Ssys, which is connected via
a heat engine to an infinite exhaust bath at temperature Texh. The system, which
is used to fuel the engine has free energy

Fsys = Usys − TexhSsys, (6.17)

which is generally less than its total energy. That is to say, the engine may extract
all but TexhSsys of the energy. The unextractable energy is necessarily expelled as
exhaust and guarantees that the entropy of products is at least as large as the
entropy of the consumed fuel.

Sexh = Q/Texh ≥ (TexhSsys)/Texh = Ssys (6.18)

For real systems the exhaust bath may not be infinite and the temperature Texh

may not be constant. In this case 6.17 should be replaced by an integral equation.

The most natural definition of Smax is one at which the system has zero free
energy.

F ∼ U − TS
Smax ≡ S(F = 0)

∼
U
T

(6.19)

The universe is not in a heat death today because S < Smax (and so F , 0).
Nevertheless, the amount of energy U in a comoving volume, and the minimum
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available exhaust temperature T, are both finite and so there is some finite
entropy Smax which, if S = Smax today, there would presently be no free energy.

S = Smax means that no free energy is available, but it does not mean that no free
energy can become available. Both quantities on the right-hand-side of equation
6.19 potentially change with time. Figure 6.5 shows the evolution of U (thick
black; taken to be energy in radiation and matter in a comoving volume) and
three potential exhaust temperatures,

Texh =


TCMB,
Tmax BH,
TdeS.

(6.20)

The first potential exhaust that we have considered is the cosmic microwave
background (CMB; shown in green), the second are large black holes (the largest
causal black hole is shown in thick pink; refer to Section 6.2.4), and the third
potential exhaust is the the de Sitter background (thick purple).

Today the lowest available exhaust temperature is that of a large black hole (not
that of the CMB). If we suppose that large causal black holes could have existed
during the radiation era, then those black holes would have been the lowest
available exhausts then, and dissipative processes might have been driven by the
CMB-black hole temperature gradient. In the near future the CMB temperature
will drop below the de Sitter temperature, and that will become the lowest
available exhaust.

The maximum entropy Smax is calculated using equation 6.19 and is shown in
thick blue in the bottom panel of Figure 6.5. Since U and T become constant
in the future, and the entropy within the considered comoving volume Suni can
only increase, the amount of free energy in the comoving volume decreases in
the future (see equation 6.17).

The Smax that we have discussed in this section is defined in terms of the available
energy and exhaust temperatures (equation 6.19). It is quantitatively similar
to the maximum entropy of Frautschi (1982, 1988) by construction (see Section
6.2.4). It is also quantitatively similar to the covariant entropy bound of Bousso
(1999) (applied to the same volume; see Section 6.2.3), although the reason for
this is not clear to us.

In this section we used the conserved matter in a comoving volume and the
constant de Sitter temperature to show that maximum entropy in the comoving
volume becomes approximately constant in the future. The bleak implication
for dissipative processes is that there is a finite amount of free energy in any
comoving volume. On the other hand, the fraction of U that is not free (due to
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Figure 6.5 The most useful definition of Smax is the entropy at which there is no more free
energy, Smax ∼ U/Texh. In this figure we show the time evolution of U and Texh. The volume
we are considering is the comoving volume that currently corresponds to the observable
universe. The energy U is taken to be the total radiation and matter in this volume (thick
black). If we include dark energy as a potential fuel U then the energy in the comoving
volume rapidly increases around the present time (thin black). Three candidates for Texh are
explored: the CMB background temperature (in green), largest causal black holes (in thick
pink) and the de Sitter background (thick purple). We use thin pink lines for dubious black
holes (these have Schwarzschild radii larger than the hubble sphere). The maximum entropy
Smax (shown in thick blue) is calculated using Tmax BH at early times (which is lower than
TCMB) and TdeS at late times.
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the cumulative increase in entropy to the present day) is only

STexh

U
<
∼ 10−10. (6.21)

As mentioned in the introduction (issue 3) future entropy production may depend
on whether or not the equation of state of matter can be changed. Using figure
6.5 it is easy now to see the effect this might have. If energy was converted
from matter into a form with a lower equation of state w < wmatter = 0 then the
energy U (the black line in Figure 6.5) would increase into the future instead
of becoming constant. The exhaust temperature (de Sitter temperature) would
not change significantly, since it depends primarily on the dark energy density.
As a consequence the maximum entropy, and the free energy would increase.
On the other hand, if matter were converted into a form with w > 0 (such as
radiation, wrad = 1/3) would cause U to decrease into the future. Again, TdeS

remains unchanged and Smax and and F would decrease with time.
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CHAPTER 7

CONCLUSIONS

As the music finishes again,
have you thought about,

how we almost never lift our eyes,
from the ground,

to the black space above the clouds.

- Kent, “View From a Castle in the Sky”

The Cosmic Coincidence Problem

Matter and dark energy are observed to presently contribute to the total cosmic
energy density in the ratio

r0 ≡ min
[
ρm0

ρde0
,
ρm0

ρde0

]
≈ 0.4. (7.1)

Since the matter and dark energy densities dilute at different rates during the ex-
pansion of the Universe, we are faced with the cosmic coincidence problem: Why
are the current matter and dark energy densities the same order of magnitude
today? In other words, why is r (as defined above), so large?

We have used the temporal distribution of terrestrial planets in the Universe to
estimate the temporal range during which terrestrial-planet-bound observers are
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likely to arise. Using this observer distribution we have quantified the severity
of the cosmic coincidence problem by computing the probability P(r > 0.4) of
observing values of r larger than 0.4.

Assuming the standard ΛCDM density histories for ρm and ρde we find

P(r > 0.4) = 68+14
−10%. (7.2)

Given the temporal distribution of terrestrial planets, terrestrial-planet-bound
observers have a large probability of observing the matter and dark energy
densities to be at least as close as we measure them to be.

The same method is applied under the assumption of dynamic dark energy,
with an equation of state parameterized by w0 and wa. We find that some
regions of w0-wa parameter space can be discriminated against on grounds of
the coincidence problem. I.e. for some regions of w0-wa parameter space, the
probability of observing values of r > 0.4 is very low (Figure 3.7). However those
regions are already strongly excluded by observations.

Our main result is an understanding of the coincidence problem as a temporal
selection effect if observers emerge preferentially on terrestrial planets which
is found to hold under any model of dark energy fitting current observational
constraints. The cosmic coincidence problem is therefore removed as a factor
motivating dark energy models.

Searching for Life Tracers Amongst the Solar Proper-
ties

We have compared the Sun to representative stellar samples in 11 properties.
The properties were selected based a plausible relation to life, availability of a
representative stellar sample for comparison, and such that they were maximally
uncorrelated. No properties were added to, or removed from the analysis based
on previous information about whether or not the Sun was anomalous in those
properties.

Those selected properties were

1. mass,

2. age,

3. metallicity,
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4. carbon-to-oxygen ratio,

5. magnesium-to-silicon ratio,

6. rotational velocity,

7. galactic orbital eccentricity,

8. maximum height above galactic plane,

9. mean galactocentric radius,

10. host galaxy mass and

11. host group mass.

Our main results are:

• Mass and galactic orbital eccentricity are the most anomalous properties
of those included in our study. The Sun is more massive than 95 ± 2% of
nearby stars and has a Galactic orbit which is more circular than 93 ± 1 of
FGK stars within 40 pc.

• When the 11 parameters are considered together, the probability of selecting
a star, at random, which is more anomalous than the Sun, is just 29 ± 11%.

The observed “anomalies” in mass and galactic orbital eccentricity are consistent
with statistical noise (refer to Figure 4.4). This contrasts with previous work
suggesting anthropic explanations for the Sun’s high mass.

To our knowledge, this is the most comprehensive comparison of the Sun to
other stars.

The Entropy of the Present and Future Universe

We present budgets of the entropy of the observable Universe (Table 5.1) and of
the cosmic event horizon and its interior (Table 5.2). To our knowledge these are
the most comprehensive and quantitative budgets of the present entropy of the
Universe. The components included are

1. the cosmic event horizon (only applicable to the latter budget),

2. supermassive black holes,
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3. tentative stellar black holes in the range 42-140 M�,

4. confirmed stellar black holes in the range 2.5-15 M�,

5. photons,

6. relic neutrinos,

7. dark matter,

8. relic gravitons,

9. interstellar and intergalactic media and

10. stars.

The present entropy of the observable universe is found to be

Sobs = 3.1+3.0
−1.7 × 10104 k, (7.3)

and is dominated by supermassive black holes. This is to be compared with
previous estimates in the range 10101 k to 10103 k. Our larger value arises from the
inclusion of a new measurement of the supermassive black hole mass function.

The present entropy of the cosmic event horizon is calculated to be

SCEH = 2.6 ± 0.3 × 10122 k, (7.4)

dwarfing that of its interior,

SCEH int1.2+1.1
−0.7 × 10103 k. (7.5)

Figure 5.5 illustrates the possible role played by intermediate mass black holes.
The time evolution of these two budgets is discussed (see Section 5.4 and Figures
5.6 and 5.7).

Entropy bounds from the literature are applied to a comoving volume normalized
to the present observable Universe (Fgures 6.3 and 6.4). While the Bekenstein
bound and the holographic bound become arbitrarily large, Bousso’s covariant
entropy bound on this volume increases monotonically and asymptotes to a
constant around 10123 k. As does a simplistic bound based on the assumption
that the comoving matter density is constant and that the future background
temperature is the de Sitter temperature. According to both of these bounds the
free energy in the comoving volume is also finite and a heat death is therefore
expected (either in a finite time or asymptotically).
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APPENDIX A

ENTROPY AND THE FREE
ENERGY PREREQUISITES FOR

LIFE IN THE UNIVERSE

Charles H. Lineweaver
Chas A. Egan

A.1. The Irreversible History of Entropy

A.1.1. Pedagogical Pitfalls

Although an undergraduate education in the physical sciences contains no
explicit warnings against thinking about biology, most physics graduates come
out believing that the most fundamental aspects of the universe are dead things
in equilibrium obeying conservative forces. Frictionless pendulums may be
simple, but when studied for too long, students begin to believe that they really
exist. They don’t. Friction is not just an optional accessory inserted into simple
equations to make life difficult. Friction, dissipation and the unequal sign in
the second law of thermodynamics is what makes life possible. The first law of
thermodynamics (energy conservation) precedes the second (entropy increase)
in textbooks, but there is no evidence that this precedence reflects any natural
order of things in the universe.

Physicists are taught that whatever biology is about, it can be reduced to chem-
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istry; and that whatever the chemists are up to, it can be reduced to physics.
However, physics as we know it can also be viewed as a subset of biology since
all physicists are the products of biological evolution.

Much has been made of our current inability to unify general relativity and
quantum mechanics to arrive at a theory of everything. Although the murky
relationship between gravity and entropy may provide key insights into the
theory of everything, it has received much less attention. Although gravitational
collapse plays the most important role in converting the initial low entropy
of the universe into the dissipative structures we see all around us (including
ourselves), gravity is almost universally ignored in thermodynamics textbooks.

“We do not yet know if the second law applies to gravitational
interactions. Is the second law valid only from a given (or “slowly”
varying) gravitational state? Can we include gravitation?” (Prigogine
1980, p. 196)

In this paper, we attempt to make sense out of the relationship between life,
gravity and the second law of thermodynamics. In Section A.1 we briefly review
the history of attempts by physicists to understand life. In Section A.2 we
describe how free energy and low entropy radiation from the Sun maintains
the low entropy structures of Earth. We review the entropy of photons in an
expanding universe in Section A.3 and consider the relationship between gravity
and entropy in Section A.4. We conclude by discussing the heat death of the
universe (Section A.5). Our goal is to understand more clearly how gravitational
collapse is the source of free energy for life in the universe. Appendices contain
mathematical details.

A.1.2. Physicists and Life

When iconoclastic physicists move out of equilibrium and think generally about
the question “What is life?”, the concepts of entropy and free energy play central
roles. In the first half of the 19th century, Carnot(1824), Clausius(1867) and others
came to understand that although energy is conserved and can not be destroyed,
useful work – or extractable free energy – could be destroyed. Irreversible
processes are destroying free energy all the time. Ludwig Boltzmann (1886) was
concerned about entropy and the distinction between energy and free energy:

“The general struggle for existence of animate beings is therefore not
a struggle for raw materials — these, for organisms, are air, water
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and soil all abundantly available – nor for energy which exists in
plenty in any body in the form of heat (albeit unfortunately not
transformable), but a struggle for entropy, which becomes available
through the transition of energy from the hot sun to the cold earth.”

In Section A.2 we describe and quantify this “transition of energy from the hot sun
to the cold earth”. Although Boltzmann explicitly talks about “animate beings”,
the same thing could be said about any far from equilibrium dissipative structure:
convection cells, hurricanes, eddies, vortices and accretion disks around black
holes (Glansdorff & Pirgogine 1971, Nicolis & Prigogine 1977, Prigogine 1980).
Life is a subset of this general class of dissipative structure (Schneider & Kay
1994, 1995, Lineweaver 2006, Schneider & Sagan 2006).

In “What is Life?” (Schroedinger 1944) made it clear that Boltzmann’s animate
beings were not struggling for entropy. If they were struggling at all, it was to
get rid of entropy, or to absorb negentropy:

“What an organism feeds upon is negative entropy. Or, to put it less
paradoxically, the essential thing in metabolism is that the organism
succeeds in freeing itself from all the entropy it cannot help producing
while alive.”

In the notes for a later edition (1956) Schroedinger apologizes to his physicist
colleagues and admits that instead of negative entropy, he should have been
talking about free energy. There is general agreement that life on Earth (and
elsewhere) depends on the non-equilibrium of the universe and requires free
energy to live.

“[T]he one unequivocal thing we know about life is that it always dis-
sipates energy and creates entropy in order to maintain its structure.”
(Andersen and Stein 1987).

In our search for extraterrestrial life, we can use the most fundamental aspects
of terrestrial life to guide us. At the top of the list is life’s requirement for free
energy. Despite uncertainties in the temperature limits of life (< 130◦ C?), despite
uncertainties in which solvent life can use (water?), despite uncertainties in its
chemistry (carbon-based?) - extraterrestrial life, like terrestrial life, will need
a source of free energy. Free energy is a more basic requirement that all life
anywhere must have. Thus, instead of “follow the water”, our most fundamental
life-detection strategy should be “follow the free energy”. To find chemistry-
based life we should look for the redox gradients between electron donors and
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acceptors. These considerations motivate us to quantify and understand the
origin of free energy (Fig. A.1).

In the beginning, 13.7 billion years ago, the universe was very hot. There was no
life and there were no structures in the universe. The universe was a thermal heat
bath of photons and a soup of nuclei (and later atoms) in chemical equilibrium.
Life is not possible in such an environment. In thermal equilibrium and chemical
equilibrium, no free energy is available. As the universe expanded, the heat
bath cooled and life emerged. Life did not emerge simply because the universe
cooled down to have the right temperature for H2O to be a liquid. Life needed a
source of free energy unavailable from an environment in chemical and thermal
equilibrium. In this paper we try to clarify the idea that the origin of all sources
of free energy can be traced back to the initial low gravitational entropy of
the unclumped matter in the universe (e.g. Penrose 2004). The gravitational
collapse of this matter produced galaxies, stars and planets and is the source of
all dissipative structures and activities, including life in the universe. See Dyson
(1979), Zotin (1984) and Chaisson (2001) for discussion of how life (unlike abiotic
dissipative structures) seems to evolve toward more complexity.

A.1.3. The Pyramid of Free Energy Production

Usually bacteria are considered to be at the bottom of the food chain or at the base
of the primary production pyramid, but an interesting perspective comes when we
add layers to the base of the pyramid. At the top of Fig. A.1 are heterotrophs, who
eat (= extract free energy from ) organic compounds (including other heterotrophs)
produced by the primary producers one level down. Heterotrophs include
wolfs, humans, fish and mushrooms. Supporting all heterotrophic life are the
primary producers (phototrophs and chemotrophs). Although phototrophs and
chemotrophs are usually considered to be primary producers, they get their free
energy from solar photons and inorganic compounds, respectively. Phototrophs
include plants and cyanobacteria and all photosynthesizers. Chemotrophs include
iron and manganese oxidizing bacteria living off the non-equilibrium chemistry
of igneous lava rock.

The vertical line in Fig. A.1 indicates that stars are the free energy sources for
phototrophs while the chemical and thermal disequilibrium of the Earth is the
source of the free energy in the inorganic compounds used in the metabolisms
of chemotrophs. The source of both the free energy provided by stars and by
planets comes from gravitational collapse in the level below in the sense that the
source of starlight is the fusion reactions taking place in the hot, dense center of
the Sun that is the result of gravitational collapse. The chemical and thermal
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disequilibrium of the Earth also has its source in the free energy of gravitational
collapse.

Moving one level lower in the pyramid, gravitational collapse is made possible by
an initially very diffuse, almost unclumped distribution of baryons. Unclumped
baryons in the early universe provided the initial low entropy of the universe. At
the lowest level in the pyramid, the source of these almost unclumped baryons is
baryon non-conservation (Sakharov 1967). The low initial gravitational entropy
of the universe and baryon non-conservation are discussed further in Section
A.4.

The sources of free energy in the universe are summarized in Fig. A.2. In
a gravitational system (left panel), such as a protoplanetary accretion disk,
consider a small mass m in orbit at distance r from a large mass M at r = 0.
The effective potential, including angular momentum L is φ(L, r) = L2

2mr2 −
GmM

r
(e.g. Goldstein 1980). Angular momentum L must be reduced for gravitational
collapse to happen. Consider two small masses, originally in identical effective
potentials (two light grey balls). They come close to each other and exchange
some angular momentum. The one that lost L, sinks into the well closer to M,
the one that gained L distances itself from M. Since the L of each mass has
changed, their effective potentials have diverged. One m collapses, the other is
expelled. Without the dissipation of energy, expulsion of matter and transfer of
angular momentum that occurs in the turbulence and viscosity of an accretion
disk (e.g. Balbus 2003), matter would not gravitationally collapse. The efficiency
of star formation in a molecular cloud is a few percent. A substantial fraction of
the infalling matter is scattered, or receives a large dose of angular momentum
as it is processed through the accretion disk and then expelled (Balbus 2003).
Therefore accretion disks are also expulsion disks (see Fig. A.3 for the role of
dynamical friction in the gravitational collapse of less-viscous non-accretionary
systems). Gravitational collapse creates entropy by radiating away the MG/r
potential energy and expelling high velocity, high angular momentum material.

Fusion in the core of the Sun was made possible by the gravitational collapse of
∼ 1031 kg of hydrogen resulting in high densities and temperatures. Gravitational
collapse also provides the conditions in the cores of stars to make matter roll
down the nuclear binding energy curve to the energy minimum (middle panel,
Fig. A.2).

The right panel of Fig. A.2 shows that the amount of energy extractable from
chemical bonds depends on the energy difference ∆E between the electron in
the potential well of the donor and that of the acceptor (Nealson & Conrad
1999). Life takes in energy-rich atoms with electrons in high orbitals (electron
donors) and excretes the same atoms with the electrons in the deeper atomic
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or molecular orbitals of electron acceptors. Solar photons provide the energetic
kick ∆E to lift the electrons back up during photosynthesis in phototrophs, who
provide the energy-rich materials for heterotrophs (e.g. Szent-Gyorgi 1961).

A.1.4. Big Bang Nucleosynthesis and the Subsequent Low En-
tropy of Nuclei

As the universe expands, the scale factor R increases, the temperature decreases
(T ∝ R−1) and the density decreases ρ ∝ R−3. Thus, T

Ti
=

(
ρ
ρi

)1/3
. This is the

path the universe takes in Fig. A.4 starting at some initial temperature and
density: Ti, ρi. The early universe expanded and cooled too quickly for big
bang nucleosynthesis to fuse hydrogen into iron and reach equilibrium at the
lowest nuclear binding energy per nucleon (middle panel, Fig. A.2). Thus, big
bang nucleosynthesis left nuclei in a low entropy, high energy state. Similarly,
reheating after inflation (Kolb & Turner 1990) left unclumped baryons in a state
of low gravitational entropy since the baryons are not at the bottom of the
gravitational potential wells.

Entropy is produced when free energy is extracted from the sources of potential
energy shown in Fig. A.2. For example, dissipation of gravitational energy
(left panel) happens when the turbulent viscosity and friction of an accretion
disk transfers angular momentum away from the central mass and makes some
material fall onto the central mass while other material is expelled. Without such
collisions, turbulence and friction, angular momentum would not be transferred
and material would not gravitationally collapse or be expelled. Figure A.8
illustrates gravitational systems with minimal dissipation.

Dissipation happens and entropy is produced whenever a photon gets absorbed
by a material at a temperature colder than the emission temperature. The photon
energy gets reemitted and distributed among many photons. This happens
as a gamma ray produced by fusion at the center of the Sun makes its way
to the photosphere where its energy is distributed among millions of photons
(Frautschi 1988). It also happens when the energy of solar photons (T = 5760 K)
are harvested for photosynthesis by plants at temperatures below T = 5760 K,
and when the Earth reemits solar energy at infrared wavelengths.

Energy cannot be created or destroyed. Therefore, strictly speaking, we cannot
“use energy” or “waste energy”. Energy can however be degraded. Low-entropy,
high-grade energy dissipates into high-entropy, low-grade energy. Life does
not “use” energy since the same amount of energy that enters the biosphere,
leaves the biosphere. Life needs a source of free energy, and is unable to use

136



high entropy energy. Life takes in energy at low entropy and excretes it at high
entropy. Any engine does the same thing. When coal burns, energy is conserved.
Electrons are high in the electric potentials of the fuel and lower in the potentials
of the ashes and exhaust gases. The difference (∆E in the right panel of Fig. A.2)
has been transfered into heat and work.

Two types of free energy are described in the literature: Gibbs free energy
and Helmholtz free energy (e.g. Sears & Salinger 1975). For simplicity and
convenience (cf. Appendix A.5) we focus on the Helmholtz free energy F of a
system:

F = U − TS, (A.1)

where U is the internal energy of the system, T is its temperature and S is its
entropy. The free energy F, is the amount of energy that can be extracted from
the system to do any kind of useful work such as climbing a tree or assembling
fat molecules. Equation A.1 shows that all of the internal energy U is not
available to be extracted as free energy F. There is an entropic tax: TS. TS is
the penalty one must pay for extracting the energy from the system and using
it to do any useful work. U is how much money is in the bank and TS are the
bank fees you have to pay to get it out. The higher the temperature T and the
higher the entropy S of the system, the higher the penalty and the lower will be
the extractable, usable, life-supporting, life-giving free energy F. Good engines
produce minimal entropy and have TS << U and thus F ≈ U (Bejan 2006, Eq.
3.7).
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gravitational collapse 

heterotrophs
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disequilibrium of planet

Figure A.1 Pyramid of Free Energy Production. The free energy available at one level comes
from the level below it. The lower levels are prerequisites for the life above it. The top
two levels are traditionally classified as life forms in the primary production pyramid. The
pyramid shape represents the decreasing amount of free energy available at higher trophic
levels.
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Figure A.2 Sources of Free Energy in the Universe: Gravitational (left), Nuclear (middle) and
Chemical (right). Left panel: dissipation in an accretion disk leads to angular momentum
exchange between two small masses (two light grey balls). The mass that loses angular
momentum falls in. The one that gains momentum is expelled. Middle panel: the binding
energy per nucleon due to the strong nuclear force provides the gradient that makes fusion
and fission drive nuclei towards iron. Right panel: the energy that heterotrophic life extracts
from organic compounds or that chemotrophic life extracts from inorganic compounds can
be understood as electrons sinking deeper into an electrostatic potential well φ(r) ∝ 1/r. In
every redox pair, the electron starts out high in the electron donor (light grey ball) and ends
up (black ball) lower in the potential of the electron acceptor (cf. Nealson and Conrad 1999,
their Fig. 3).
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Figure A.3 Dynamical Friction. Consider a massive particle with velocity V1 moving through
a cloud of less massive particles. The less massive particles are attracted to the massive
particle and end up clumped in the wake of the massive particle. From there, the less
massive particles will have a net gravitational force slowing down the massive particle. This
causes the most massive objects to fall into the center of the potential and is why clusters of
galaxies have massive cD galaxies at their cores. (Binney and Tremaine 1987).
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Figure A.4 Regions of the density-temperature plane where nuclear fusion reactions occur. Our
universe cooled along the line from top right to lower left. Between one second and three
minutes after the big bang, big bang nucleosynthesis (BBN) produced deuterium 3He, 4He,
and several other light isotopes whose abundances we can measure in stellar atmospheres
today (Weinberg 1977). If the baryonic density of the universe were much larger and the
expansion rate of the universe were slower (e.g. Peacock 2000), BBN would have produced
many other elements and could have burned all the hydrogen into iron and precluded the
production of starlight from stellar fusion. After BBN, most of the baryons in the universe
were in hydrogen and helium. Thus the universe was in a state of low nuclear entropy.
This allowed stars to subsequently access the free energy from nuclear fusion in their hot,
dense cores. The cores of main sequence stars are labeled “X”. The cores of brown dwarfs,
where deuterium (but not hydrogen) is fusing into helium, is labeled “BD”. The conditions
inside a Tokamak reactor are labeled “T”. The diagonal shades indicate contours of constant
reaction rate ∝ ρ2T4: the light region indicates reaction rates similar to those in BDs; the
darker region indicates reaction rates >

∼ those in main sequence stars.
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TSun =  5760 K
Sun

dQin = dQout

EARTH 

TEarth = 255 K

Figure A.5 The Sun provides the Earth with a continuing source of free energy. Energy that
comes to Earth from the Sun “dQin” is balanced by the energy radiated by the Earth into
outer space “dQout”. The temperature of the incoming photons is the temperature of the
photosphere of the Sun: TSun = 5760 K. The temperature of the outgoing photons is the
effective temperature of the Earth: TEarth = 255 K. When the Earth absorbs one solar photon
(yellow squiggle), the Earth emits 20 photons (red squiggles, Eq. A.7) with wavelengths 20
times longer. The entropy of photons is proportional to the number of photons (Eq. A.27).
Hence when the Earth absorbs a high energy solar photon at low entropy and distributes that
energy among 20 photons and radiates them back to space, the Earth is exporting entropy;
the waste entropy from the maintenance of the low entropy structures on Earth.
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A.2. The Sun is the Source of Earth’s Free Energy

Consider the amount of free energy that is delivered to the Earth in solar
photons. We make the reasonable assumption that the Earth is in a steady state
(e.g. Kleidon 2008). It is not in equilibrium because there is an energy flow in to
the system (sunlight) and out of the system (Earth radiates to space, Fig. A.5).

Steady state means that the average effective temperature of the Earth is constant.
It also means that the amount of energy delivered to the Earth in solar photons
dQin, is the same as the amount of energy radiated away by the Earth as infrared
photons, dQout. Thus, dQin = dQout. If this were not so, the internal energy U of
the Earth would be increasing – the Earth would be getting hotter or the speed
of winds and the number of hurricanes would increase, or there would be a net
increase in biomass. However, the number of organisms that are born is about
the same as the number that die. The strength of the winds that dissipate the
pole to equator temperature gradients are about the same and the number of
hurricanes which equilibrate thermal, pressure and humidity gradients, is about
the same. (We are ignoring variations in the temperature of the Earth due to
variations of the greenhouse gas content of the Earth or the Milankovich cyles
or the secular increase in solar luminosity.) Thus, in steady state, the Earth is at
a constant temperature T, constant energy U, constant entropy S and constant
free energy F.

Let dSD
dt be all the entropy produced by all the dissipative structures on Earth

(including winds, hurricanes, ocean currents, life forms, and the thermal dissipa-
tion when heat is transfered through the soil from hot sunny spots to cool shady
spots). Then we have for the entropy of the Earth:

dS
dt

=
dSγ
dt

+
dSD

dt
= 0, (A.2)

or the net decrease in entropy from photons coming in and out (dSγ
dt ) is com-

pensated for by the increase in entropy from all the dissipative, low entropy
structures on Earth. Thus,

dSγ
dt

= −
dSD

dt
. (A.3)

Since the energy in the photons arriving and leaving is equal, dQin = dQout, we
have |dSin,γ| < |dSout,γ| since:
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dSin,γ =
dQin

TSun
(A.4)

dSout,γ = −
dQin

TEarth
. (A.5)

Thus, ∣∣∣∣∣∣dSout,γ

dSin,γ

∣∣∣∣∣∣ =
TSun

TEarth
=

5760
255

∼ 20 (A.6)

Thus, the Earth exports twenty times as much entropy as it receives. Equation
(A.27) then tells us that the ratio of the number of emitted photons to the number
of absorbed photons is:

Nout,γ

Nin,γ
∼ 20. (A.7)

This is shown in Fig. A.5 with its 1 incoming solar photon and 20 outgoing
infrared photons. The entropy flux to and from the Earth from the absorbtion of
solar photons and the emission of infrared photons is:

dSγ
dt

=
dSin,γ

dt
+

dSout,γ

dt

=
dQ
dt

( 1
TSun

−
1

TEarth

)
= −

dQ
dt

1
TEarth

(
1 −

TEarth

TSun

)
= −

dQ
dt

1
TEarth

(0.95). (A.8)

Since the amount of free energy is not building up in the Earth, we have dF
dt = 0.

Let dFγ
dt be the amount of free energy delivered to the Earth by solar photons and

dFD
dt be the amount of free energy dissipated by all the dissipative structures on
Earth, then (cf. Eqs. A.2 and A.3) we have,

dF
dt

=
dFγ
dt

+
dFD

dt
= 0 (A.9)

or

dFγ
dt

= −
dFD

dt
(A.10)
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where the minus sign indicates that dFD
dt is the loss or dissipation of free energy.

Eqs. (A.9) and (A.10) are the key to understanding how the Earth can keep
absorbing free energy from the Sun without the amount of free energy in the
Earth going up. The free energy in the food we eat goes to cell repair and
movement, and is dissipated when we die or move. Similarly, all of the free
energy delivered by the Sun is dissipated in winds, hurricanes, ocean currents,
life forms, or thermal conduction through soil between sunny spots and shady
spots.

The Earth is exporting much entropy but the entropy of the Earth is not decreasing.
That is because the dissipative structures on the Earth are producing the entropy
that is exported. They need the input of free energy to stay at low entropy – just
as a refridgerator needs free energy to stay at a constant low temperature (= low
entropy steady state). Without a supply of free energy a fridge will heat up, a
hot water tank will cool down, and life will die. Things approach equilibrium.
It takes free energy to keep a fridge cool, the tank hot and the chemical order in
life forms. Free energy (or work) is needed to remove the heat and entropy that
naturally leaks into the fridge. The lower the temperature of the fridge and the
more imperfect the insulation, the more free energy is needed to maintain the
low entropy steady state.

The export of entropy does not lower the entropy of the Earth. Rather it keeps the
entropy of the Earth at a constant low level. In the absence of a flow of negentropy,
the low entropy structures, such as hurricanes, dust devils, the hydrological
cycle, thermal gradients and life forms would run down and dissipate away. The
export of entropy compensates for this natural dissipation and is the reason why
low entropy structures endure.

A.2.1. How much entropy is produced and how much free en-
ergy can be extracted from a solar photon?

We can compute the amount of free energy available on the Earth to drive the
winds, hurricanes and all of life (Kleidon 2008). Starting from Eq. A.1, taking
differentials and then dividing by dt yields the rate of increase of free energy of
the Earth:

dF
dt

=
dU
dt
− T

dS
dt
− S

dT
dt
. (A.11)

Since we are assuming steady state, F, U, T and S are all constants and all of the
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terms in Eq. A.11 are zero. However, using Eqs. (A.2) and (A.9) we can write:

dFγ
dt

+
dFD

dt
= −TEarth

(
dSγ
dt

+
dSD

dt

)
. (A.12)

Separating terms to count only the contribution from photons we get:

dFγ
dt

= −TEarth
dSγ
dt
. (A.13)

With Eq. A.8 this yields,

dFγ
dt

=
dQ
dt

0.95 (A.14)

Thus, 95% of the incoming solar energy can be used to do work, i.e. photovoltaics
at the temperature of the Earth have a maximum efficiency of 95%. To get a
numerical value for the free energy in Eq. (A.14): the solar flux impinging on the
disk of the Earth (πR2

Earth) at 1 AU from the Sun is 1366 Wm−2. Since dQin = dQout,
the average flux Io from the Earth’s surface (4πR2

Earth) balances the solar flux:

πR2
Earth1366 Wm−2 = 4πR2

EarthIo (A.15)

where, Io = 342 Wm−2.

Therefore, to get a numerical value for dQ
dt (= the flux density of solar radiation

through a unit area of 1 m2) we have:

dQ
dt

= σ T4
Earth = Io(1 − AEarth) (A.16)

= 342 (0.7) Wm−2

= 238 Wm−2 (A.17)

where AEarth ≈ 0.3 is the albedo of the Earth, and the Stefan-Boltzmann constant
is σ = 5.67 × 10−8 Wm−2K−4. Thus the flux of free energy through unit area (Eq.
A.14) is

dFγ
dt

= 238 Wm−2(0.95) = 228 Wm−2 (A.18)

This flux of free energy maintains all thermal gradients on the surface of the
Earth, all winds and hurricanes and all life, and is equal to the flux of free energy
that is dissipated by all dissipative structures (Eq. A.10).
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The total free energy available from sunlight is the flux per unit area times the
area of the Earth: 228 Wm−2

×4πR2
Earth ∼ 1.2×1017 W, which is about ten thousand

times larger than the 1.3 × 1013 W of global power consumption from burning
fossil fuels. Terrestrial life (including humans) is a subdominant dissipator of
the free energy delivered to Earth (Kleidon 2008).

There are no hurricanes or ocean currents on the Moon, so how does the free
energy delivered by solar photons get dissipated there? Performing the same
computation for the Moon as we did for the Earth we have:

Io(1 − AMoon) = σ T4
Moon (A.19)

where the Moon’s albedo is lower than the Earth’s, (AMoon ≈ 0.07). The Moon’s
effective temperature TMoon = 274 K is higher than the Earth’s because of the
Moon’s lower albedo. Instead of having hurricanes, winds, ocean currents and
life forms, the free energy of the Moon is dissipated by heat flow due to the large
temperature gradients (low entropy structures) between regolith in the sunshine
at 350 K and the shadows at 150 K. The input of low entropy solar radiation
maintains the gradients. The maximum temperature variation on the Moon is
∆T ∼ 300 K between ∼ 390 K at the equator in the early afternoon and ∼ 70 K in
the shade at the poles. On Earth, this variation is only ∆T ∼ 120 K between ∼ 320
K and ∼ 200 K. If the Moon were the same temperature as the Sun, TSun ≈ 5760
K then the “shadows” would be the same temperature as the Sun and there
would be no export of entropy. If the Moon were a smooth ball instead of having
a bumpy surface then the large scale hemispheric temperature gradient would
be the only low entropy structure and a larger temperature gradient would
be created to dissipate the same constant amount of free energy from the low
entropy photons. A further refinement to the computation above would consider
the low entropy associated with sunlight coming from a particular direction
rather than isotropically.

A.3. The Entropy of the CosmicMicrowave Background
Remains Constant as the Universe Expands

It is difficult to talk about the total entropy in the universe without knowing
how big the universe is, so we talk about the entropy in a representative sample
of the expanding universe. Typically we put an imaginary sphere around a
few thousand galaxies and consider the entropy in this expanding sphere – the
entropy per comoving volume. We parameterize the expansion of the universe
with a scale factor R. This means that when the universe increases in size by a
given factor, R increases by the same factor (Fig. A.6).
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The expansion of the universe is adiabatic since the photons in any arbitrary
volume of the universe have the same temperature as the surrounding volume.
There is no net flow of heat. The entropy of a photon gas does not increase
under adiabatic expansion. Specifically, the entropy S of a gas of photons in a
volume V at temperature T is S ∝ VT3 (e.g. Eq. A.23 or Bejan 2006, eq. 9.20).

The photon wavelengths λ, increase (are redshifted) with the scale factor: λ ∝ R.
There is no absorbtion or reemission associated with the redshifting of cosmic
microwave background photons. These photons were last scattered at the surface
of last scattering ∼ 480, 000 years after the big bang. Since the volume V increases
as V ∝ R3, and since the temperature of the microwave background goes down
as the universe expands: T ∝ 1

R , we have the result that the entropy of a given
comoving volume of space is constant (Kolb & Turner 1990, Frautshi 1982, 1988):

S ∝ VT3
∝ R3

( 1
R3

)
= constant. (A.20)

The adiabatic expansion (or contraction) of a gas in equilibrium is reversible.
Thus the expansion of the universe by itself is not responsible for any entropy
increase in the photons (Fig. A.6 top panel). Another way to understand that the
entropy of the photons in the universe remains constant as the universe expands,
is to realize that entropy is proportional to the number of photons Sγ ∝ Nγ (Eq.
A.27). The number of photons Nγ in the volume remains constant and therefore
so does the entropy. Thus, we obtain the result indicated in the top panel of Fig.
A.6: Sγ,i = Sγ, f .
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Ri
Rf

Si < Sf

Ri Rf

Si = Sf

redshifting photons 

collapsing matter

Figure A.6 The entropy of the universe changes as the universe expands. Notice that the
photons (squiggles) stay spread out while the baryons (dots) clump due to gravity. Top: as
the universe expands, the entropy of cooling redshifted photons remains constant (Eq. A.20)
while the entropy produced when material clumps into galaxies, stars and planets, increases
the total entropy of the universe. At a given initial time, the circles on the left represent
an arbitrary volume of the universe with an initial scale factor Ri. The small circle on top
contains 3 cosmic microwave background photons (squiggles). At a later time (right), the
volume has expanded but contains the same number of photons and thus Sγ,i = Sγ, f (see Eq.
A.27). The entropy of the universe, however, includes contributions from photons and the
net effect of gravitational collapse. In the lower panel, the 11 baryons (dots) start out fairly
unclumped then clump. The net entropic effect of clumped matter and the heat given off to
allow the clumping and the matter expelled to allow the clumping is: Sm,i < Sm, f . Thus, the
total entropy of the universe increases: Si < S f . The photon to baryon ratio of our universe
is about one billion, not the 3/11 shown here.
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A.4. Gravity and Entropy

In the big bang model, the early universe was in thermal and chemical equilibrium.
In the previous section we showed how the expansion of the universe is not
responsible for changing the entropy of the photons in the universe. If the
universe were in equilibrium, it should have stayed in equilibrium (top panel of
Fig. A.6). Our existence shows that the universe could not have started from
equilibrium. The missing ingredient that solves this dilemma is gravity. Matter,
evenly distributed throughout the universe, has much potential energy and low
entropy. In the standard inflationary scenario describing the earliest moments
after the big bang, matter originates (during a short period at the end of inflation
called reheating) from the decay of the evenly distributed potential energy of a
scalar field. âĂŸFalse vacuumâĂŹ decays into our true vacuum. Vacuum energy
cannot clump. However, once the potential energy of the scalar field is dumped
almost uniformly into the universe in the form of relativistic particles, these can
cool and clump if they have mass (Fig. A.6, lower panel). Unclumped matter
has a lower entropy than clumped matter:

Sunclumped << Sclumped. (A.21)

By Sclumped we mean the entropy of the phase space volume of the collapsed
material as well as the phase space volume of the material expelled during the
clumping, plus the entropy of the heat given off during the collapse and dumped
into the environment which allowed the unclumped baryons to clump. That is a
lot to include but ignoring the full picture has led to much confusion about the
relationship between gravity and entropy.

The gravitational potential energy is enormous. In this inflationary picture
the potential energy of the false vacuum is the ultimate source of all energy
and the matter/antimatter pairs which annihilate and create a bath of photons.
Because of an intrinsic asymmetry (baryon non-conservation), the annihilation
is incomplete and leaves one baryon for every billion photons. The subsequent
cooling (due to the expansion) and clumping of the residual baryons (due to
gravity) is the source of all the free energy, dissipative structures and life in the
universe (bottom level in Fig. A.1).

The relationship between entropy and gravity is similar to the relationship
between energy and heat 200 years ago when the concept of energy conservation
in thermodynamics was being developed. It took many decades for the different
forms of energy to be recognized. Kinetic energy was different from potential
energy, “caloric” became heat energy and Einstein showed us there was energy
in mass and in the momentum of massless particles: E2 = p2c2 + m2c4. It
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seems to be taking even longer to recognize and define the different forms of
entropy, including gravitational entropy and informational entropy (Brissard
2005, Shannon 1950).

There is some confusion about life being in violation of the second law. If dS > 0
how can life be so ordered? The answer is that the order and low entropy of
life is maintained by the production and export of entropy. Similarly, there is
confusion about clumped material or gravitational structures being in violation
of the second law. The resolution is the same: the entropy of the environment
needs to be included in the calculation.

Life is trying to maintain its order, while the second law is trying to decrease
order. Superficially it seems that life and the second law are at cross purposes.
In fact, life and the second law are allies, since the maintainence of a highly
ordered structure increases the disorder of the universe more than would be
the case without the structure. Similarly, maintaining the low entropy of the
structures produced during gravitational collapse (e.g. bipolar outflows of active
galactic nuclei and accretion disks) exports entropy such that the net result is an
increase of the entropy of the universe, not a decrease.

A.4.1. Diffusion and Gravitational Collapse

A misleading idea is that entropy makes things spread out while gravitational
collapse makes things clump together, and therefore gravity seems to work
against or even violate the second law.

“A recurring theme throughout the life of the universe is the continual
struggle between the force of gravity and the tendency for physical
systems to evolve toward more disorganized conditions. The amount
of disorder in a physical system is measured by its entropy content. In
the broadest sense, gravity tends to pull things together and thereby
organizes physical structures. Entropy production works in the oppos-
ite direction and acts to make physical systems more disorganized and
spread out. The interplay between these two competing tendencies
provides much of the drama in astrophysics.” Adams and Laughlin
(1999).

The part of this quote that is easily misleading is “In the broadest sense, gravity
tends to pull things together and thereby organizes physical structures. Entropy
production works in the opposite direction ...”
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See Fig 27.10 of Penrose (2004) for some clarity on this issue. Gravity organizes
physical structures but at the expense of disorganizing and expelling other
material. This supposed struggle between entropy and gravity is misleading
because lots of material is expelled (then ignored in the computation). The heat
is ignored too. Consideration of only the centralized accreted remains, does
not encompass the full entropic effects of gravitational collapse (Binney and
Tremaine 1987).

“If one part of the system becomes well ordered and loses entropy, the
system as a whole must pay for it by increasing its entropy somewhere
else for compensation” (Adams & Laughlin 1999).

Gravity can only pull things together if angular momentum and energy are
exported. If we ignore the entropy associated with the angular momentum and
energy export, it is easy to imagine that gravity pulling things together is acting
in the opposite direction of the second law, just as it is easy to believe that life is
acting in the opposite direction of the second law. If one focuses on the collapsed
object while ignoring the increased entropy of the surrounding distribution of
stars (which puffs up when part of it collapses), one could believe that:

“The gravitational contribution to entropy is negative and the cor-
relations of clustering decrease this entropy. If we retain the notion
that systems evolve in the direction of an entropy extreme (a max-
imum negative value in the gravitational case), then we should expect
infinite systems of galaxies to form tighter and tighter clumps over
larger and larger scales.... Spherical systems of stars evolve toward
maximum negative gravitational entropy.” (Saslaw 1985 p. 65)

When we ignore the entropy produced during the gravitational collapse of the
“spherical systems of stars”, and concentrate only on the collapsed system itself,
then Saslaw may be correct, but this seems to contradict the idea that the entropy
of a black hole is large and positive SBH > 0. The transition from a negative value
to a positive value when an object collapses into its event horizon is problematic
(Frampton 2008, Hsu & Reeb 2008).

Neither gravitational collapse nor life violate the second law when we include
the increased entropy of the environment. Thus, the maintenance of a fridge or
an accretion disk or life, increases the total entropy of the universe.

Thermal (random kinetic energy) can be written as Ekin =
p2

2m , while gravitational
binding energy is Egrav = GMm

r . When things are hot, Ekin >> Egrav and diffusion
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dominates. The maximum entropy state is reached when the atoms, or molecules
or stars or galaxies fill up the space randomly. They occupy a larger volume of
phase space. This is labeled “Diffusion” in the top panel of Fig. A.7. When things
are cold, Ekin << Egrav, gravitational collapse occurs and leads to a black hole.
Fig. A.7 describes what happens in a universe that is not expanding. However,
consider what happens to Ekin and Egrav when the universe expands (the scale
factor R increases as is shown in Fig. A.6). Since p =

po

R and any distance scales
as r = roR we have Ekin =

Ekin,o

R2 and Egrav =
Egrav,o

R . Thus, as the universe expands,
Ekin decreases faster than Egrav and we will always eventually have Ekin << Egrav,
which leads to gravitational collapse, black holes and then their evaporation into
a diffuse gas of photons – the maximum entropy state of the universe, within
which no life can exist. Thus, to depict our universe, the bottom panel of Fig.
A.7 should be moved to the right and tacked onto the top panel.

A.4.2. Black Holes and Heat Death

Bekenstein (1973) and Hawking (1974) showed that a black hole of mass M has
a temperature, TBH = ~c3

8πGk
1
M and evaporates predominantly as photons when

its temperature is hotter than the background temperature. Thus, although
the entropy of a black hole, S = 4πkG

~c M2 = kc3

~G
A
4 , is sometimes referred to as a

maximum entropy state, the sharp gravitational gradient at the event horizon
leads to evaporation, photon emission and a higher entropy state of randomly
distributed photons. If the background temperature is larger than TBH then the
black hole will increase in mass and cool down. However in an expanding
universe, TCMB ∝

1
R and as the universe expands, R increases, TCMB decreases

and eventually we have TBH > TCMB, which leads to the evaporation of the black
hole and the diffusion of the photons produced.

The second law establishes the arrow of time. Since we are far from equilibrium
dissipative structures, we must move through time in the direction in which
entropy increases and in which free energy is available. Since all observers
are dissipative, our existence depends on dS > 0. The situation dS = 0 is
unobservable. This may be an anthropic explanation for the initial low entropy
of the universe. No other explanations are known to us. Just as a universe,
with a value of a cosmological constant that is too big, is unobservable because
stars never form (e.g. Weinberg 1987), so too, a universe that starts at maximum
entropy is unobservable. Since life (and any other dissipative structures) needs
gradients to form and survive, the initial condition of any universe that contains
life will be one of low entropy, not high entropy. You can not start an observable
universe from a heat death.
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In the multiverse scenario, we imagine universes with varying degrees of baryon
non-conservation. If baryon number were conserved, the early universe would
have had the same amount of matter as anti-matter. The universe would be filled
with a diffuse gas of photons at maximum entropy. There would be no matter
homogeneously distributed that would provide the low initial gravitational
entropy. Low energy photons, spread out evenly over the volume of the universe,
is a maximum entropy state. Baryons spread out evenly, is a minimal gravitational
entropy state.

In addition to baryon non-conservation, a requirement for life is that the baryons
not be already clumped into black holes. They can be very smoothly distributed,
or clumped a bit, but not too much. In other words, non-clumped (but clumpable)
matter is required to start the universe at low entropy.

Penrose (1979, 1987, 1989, 2004) has been concerned with the relationship between
entropy and gravity for more than three decades (see also Barrow & Tipler 1986).
He has stressed the amazingly unlikely initial low gravitational entropy of the
universe that ensured that dissipative structures formed as gravity clumped
matter and produced gradients to drive dissipative structures.

This low initial entropy of the universe is quantified by the low amplitude of the
power spectrum of density perturbations measurable in the cosmic microwave
background and in the large scale structure of galaxies. According to the
inflationary scenario, these low amplitude density fluctuations have their origin
in irreducible vacuum fluctuations that became real during inflation, in a manner
analogous to the way electrons and positrons are created out of the vacuum by
ultra-strong electric fields between capacitor plates. The initial low amplitude
of fluctuations is measured as the amplitude Q of CMB fluctuations or the
amplitude A of the power spectrum P(k) of large scale structure. The lower the
initial values of Q or A, the lower the degree of clumpiness and the lower the
initial gravitational entropy of the universe. Penrose (1979) describes these low
entropy initial conditions in terms of small values for the Weyl curvature tensor.
We are uncertain how to explain the low values of Q or A or the Weyl curvature.
In a multiverse scenario, perhaps there is some mother distribution of values
from which each universe gets its own initial entropy and ours is low because it
has to be for us to evolve and observe it (Tegmark & Rees 1998).
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Figure A.7 Entropy increases during both diffusion (top) and gravitational clumping (bottom).
If thermal energy dominates the gravitational binding energy (top), then entropy will increase
as material diffuses and spreads out over the entire volume (think perfume diffusing in a
room). If gravitational binding energy dominates thermal energy (bottom), then entropy
will increase as some material and angular momentum is expelled to allow other matter to
have lower angular momentum and gravitationally collapse into galaxies and stars, which
eventually collapse/accrete into a black hole. If the temperature of the background photons
is lower than the temperature of the black hole, the black hole will evaporate to produce the
maximum entropy state of photons spread out over the entire volume (last circle in lower
panel). Compare this figure to Fig. 27.10 of Penrose (2004).
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pendulum

Two almost dissipationless  gravitating systems
globular cluster  (M80)

Figure A.8 Two almost dissipationless gravitating systems: a globular cluster and a pendulum.
Globular clusters are some of the oldest structures in the universe (∼ 12 billion years). If there
were no friction we would have a Hamiltonian system in which energy inside the system is
conserved as it sloshes back and forth between kinetic and potential energy. Such a system
cannot collapse further. The resulting isothermal sphere is the maximum entropy solution
(Binney & Tremaine 1987). Even nominally Hamiltonian systems such as galaxies and
globular clusters, emit gravitational waves and collapse. These almost Hamiltonian systems
should be contrasted with the large dissipation and entropy production of protoplanetary
accretion disks that allow stars to form and the much larger accretion disks in active galactic
nuclei (AGN) which feed black holes in the center of galaxies. (Image of M80 credit: Hubble
Heritage Team, AURA/ STScI/ NASA)
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Figure A.9 The universe starts off at low entropy (not zero) due to the low level of density
perturbations in the early universe – low Q and low A (e.g. Tegmark and Rees 1998) – where
“low” means less than the maximum value Smax. At Smax all the energy density of the universe
is in massless particles in equilibrium at a common temperature. Thus the universe starts off
with a large entropy gap ∆S. The parameters Q and A are the observable normalizations of
the primordial density fluctuations and set the initial gravitational entropy of the universe.
There is no general agreement on the curve shown here. See for example Fig. 7.3 of Davies
(1994) and Fig. 1.2 of Frautschi (1988).
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A.5. The Entropy Gap and the Heat Death of the
Universe

Is the entropy of the universe getting closer or further from its maximum
value Smax? That is: Is the entropy gap, ∆S(t) = Smax − S(t), increasing or
decreasing? Through gravitational collapse, and the irreversible, dissipative
processes produced by the density and chemical gradients that result, the entropy
of the universe increases, while Smax may be constant (Egan & Lineweaver 2009).
Fig. A.9 shows a monotonically decreasing entropy gap leading to a heat death
with no possibility for life thereafter. The concept of a heat death was introduced
by Thomson (1851, 1862) and has dominated the discussion of the far future fate
of the universe.

Tolman (1934) showed that if the universe could bounce back from a contraction
into an expansion, a cyclic universe could not be one that is infinitely old, since
with each cycle, the entropy of the material would increase, and the cycles would
get longer and longer. Steinhardt and Turok (2007) have a model which gets
around this entropy problem by reducing entropy with the free energy of a
semi-infinite gravitational potential.

In a universe where the energy is conserved (∆U = 0), the free energy available
to do work (to maintain far from equilibrium structures) is ∆F = −T∆S and this
is plotted in Fig. A.10.

Entropy is the unifying concept of life because the second law is universal; it
applies to everything (Schneider & Kay 1994). Man, machine, microbe or the
entire cosmos – there is no scale or material to which the second law does not
apply. However, the degree to which the equations of thermodynamics apply
to near equilibrium situations, steady state situations and far from equilibrium
situations is still problematic (see however, Dewar 2003, 2005).

If Darwin had read Carnot (1824), Prigogine (1978) and Penrose (1979, 2004)
rather than Newton, Malthus and Lyell, the last paragraph of the Origin of
Species would have read something like

“There is grandeur in this view of life, with its dissipative powers,
having been originally induced into many forms of far from equi-
librium dissipative systems, and that, whilst irreversible processes
on this planet have produced entropy according to the fixed second
law of thermodynamics, from so simple a low gravitational entropic
state, endless forms most beautiful and most wonderful have been
and continue to increase the entropy of the universe as they destroy

158



the gradients which spawned them.”
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  time  

Heat Death

Figure A.10 The free energy in the Universe: ∆F = −T∆S. As long as there is an entropy gap
in the universe, i.e., as long as ∆S > 0 (Fig. A.9), there will be a flow of free energy to make
life possible. As ∆S→ 0 and T→ 0 then ∆F→ 0 and life can no longer survive.
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Appendix A. Entropy of Blackbody Photons

Here we show that the entropy of a system of N particles is S ∼ N. For reference,
Boltzmann’s constant is k = 1.38066 × 10−23J/K. The Stephn-Boltzmann constant
σ = π2

15
k4

~3c3 = 7.565 × 10−16Jm−3K−4. Consider a photon gas at temperature T in a
volume V (e.g. Sears & Salinger 1975). The internal energy is,

U = VσT4. (A.22)

The entropy is

S =
4
3
σVT3. (A.23)

The pressure is

p =
1
3
σT4, (A.24)

and the number of photons is

Nγ =
36.06
π4k

σVT3 (A.25)

=
27.045

kπ4 ×
4
3
σVT3

=
27.045

kπ4 S. (A.26)

Thus,
S = 0.2776 k Nγ, (A.27)

and to measure the entropy of the microwave background we just need to count
photons. If the number of photons in a given volume of the universe is N, then
the entropy of photons in that volume is S ∼ kN. The photonic entropy of the
universe is in the cosmic microwave background. Starlight cannot change that. If
all the matter in the universe were transformed into 3 K blackbody radiation, the
number of photons would add up to only ∼ 1 % of the number of CMB photons.
The entropy of the universe would increase by only ∼ 1% (Frautschi 1982).

Appendix B. Which Free Energy is most useful F or
G?

Thermodynamic equilibrium may be characterized by the minimization of the
Helmholtz free energy (Eq. A.1) F = U−TS (e.g. Prigogine 1978). When U = TS,
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no free energy can be extracted from the system, but this is not the same as
equilibrium. When there are pressure gradients that can do pdV work and drive
organization, i.e., hurricanes, F is the most relevant free energy. When pressure
cannot be used, i.e., life on Earth, or photon pressure of the cosmic microwave
background, then G is more relevant.

Chemists are used to dealing with the Gibb’s Free energy of a reaction G, where
G = U − TS − pV and G is the extractable energy, or free energy under constant
pressure conditions (the usual conditions under our stable atmosphere and in
the universe except at shock fronts and hurricanes). G does not include the pdV
work that could be done by a pressure gradient of the atmosphere, while F does.
We use the Helmholtz free energy because we are interested in the most generic
situations. We want to know the extractable energy under any conditions.

Since the free energy can never be more than the internal energy, TS will always
be positive, or (TdS + SdT) > 0. Using Eqs. Eq. A.1, A.22, A.23, the free energy
of a photon gas is,

F = U − TS (A.28)

= VσT4
−

4
3
σVT4

= −
1
3
σVT4. (A.29)

This is the work that the photon gas could do if it were surrounded by zero
pressure. However the photon gas fills the universe, and can do no work on
itself.

The Gibbs free energy of a photon gas in equilibrium does not include pdV work
and is equal to zero:

G = U − TS + pV (A.30)
= F + pV

= −
1
3
σVT4 +

1
3

VσT4

= 0 (A.31)

No pdV work is used to drive the chemistry-based metabolisms of terrestrial life
forms, however some dissipative structures are driven by pdV work and so here
we use F in our computations. We interpret Eq. A.31 as “no Gibbs free energy
can be extracted from a photon gas at equilibrium”
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