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ABSTRACT

The energy densities of matter and the vacuum are currently observed to be of the same order of magnitude:
(�m0

� 0:3) � (��0
� 0:7). The cosmological window of time during which this occurs is relatively narrow. Thus,

we are presentedwith the cosmological coincidence problem: why, just now, do these energy densities happen to be of
the same order? Here we show that this apparent coincidence can be explained as a temporal selection effect produced
by the age distribution of terrestrial planets in the universe. We find a large (�68%) probability that observations
made from terrestrial planets will result in finding�m at least as close to�� as we observe today. Hence, we, and any
observers in the universe who have evolved on terrestrial planets, should not be surprised to find�m0

� ��0
. This re-

sult is relatively robust if the time it takes an observer to evolve on a terrestrial planet is less than �10 Gyr.

Subject headinggs: astrobiology — cosmological parameters — cosmology: theory — extraterrestrial intelligence —
planetary systems: formation — stars: formation

1. IS THE COSMIC COINCIDENCE REMARKABLE
OR INSIGNIFICANT?

1.1. Dicke’s Argument

Dirac (1937) pointed out the near-equality of several large
fundamental dimensionless numbers of the order 1040. One of
these large numbers varied with time, since it depended on the
age of the universe. Thus, there was a limited time during which
this near-equality would hold. Under the assumption that observ-
ers could exist at any time during the history of the universe, this
large number coincidence could not be explained in the standard
cosmology. This problem motivated Dirac (1938) and Jordan
(1955) to construct an ad hoc new cosmology. Alternatively,
Dicke (1961) proposed that our observations of the universe
could only be made during a time interval after carbon had been
produced in the universe and before the last stars stop shining.
Dicke concluded that this temporal observational selection effect—
even one so loosely delimited—could explain Dirac’s large num-
ber coincidence without invoking a new cosmology.

Here we construct a similar argument to address the cosmic
coincidence: why just now do we find ourselves in the relatively
brief interval during which �m � ��? The temporal constraints
on observers that we present are more empirical and specific than
those used in Dicke’s analysis, but the reasoning is similar. Our
conclusion is also similar: a temporal observational selection ef-
fect can explain the apparent cosmic coincidence. That is, given
the evolution of �� and �m in our universe, most observers in
our universe who have emerged on terrestrial planets will find
�� � �m. Rather than being an unusual coincidence, it is what
one should expect.

There are two distinct problems associated with the cosmolog-
ical constant (Weinberg 2001; Garriga&Vilenkin 2001; Steinhardt
2003). One is the smallness problem and has to do with the ob-
served energy density of the vacuum, ��. Why is �� so small
compared to the�10120 times larger value predicted by particle

physics? Anthropic solutions to this problem invoke a multi-
verse and argue that galaxies would not form and there would
be no life in a universe, if �� were larger than �100 times its
observed value (Weinberg 1987; Martel et al. 1998; Garriga &
Vilenkin 2001; Pogosian & Vilenkin 2007). Such explanations
for the smallness of �� do not explain the temporal coincidence
between the time of our observation and the time of the near-
equality of �m and ��. One can address this coincidence prob-
lem in the context of a multiverse scenario in which the value of
�� is treated as a variable while holding other parameters fixed
(Garriga et al. 2000). This changes the time t� when �� begins to
dominate the energy density of the universe. Here we address the
coincidence problem in a more restricted context. We consider
only the observed universe. Specifically, given the value of �� in
our universe, why is it that we are here now to observe the start
of its dominance?

1.2. Evolution of the Energy Densities

Given the currently observed values for H0 and the energy
densities �r0 , �m0

, and ��0
in the universe (Spergel et al. 2007;

Seljak et al. 2006), the Friedmann equation tells us the evolution
of the scale factor a, and the evolution of these energy densities.
These are plotted in Figure 1. The history of the universe can be
divided chronologically into four distinct periods, each domi-
nated by a different form of energy: initially the false vacuum
energy of inflation dominates, then radiation, then matter, and
finally vacuum energy (see Table 1). Currently, the universe is
making the transition from matter domination to vacuum energy
domination. In an expanding universe, with an initial condition
�m > �� > 0, there will be some epoch in which �m � ��,
since �m is decreasing as/1/a3, while �� is a constant (see Fig. 1,
top, and the Appendix). Figure 1 also shows that the transition
from matter domination to vacuum energy domination is occur-
ring now.When we view this transition in the context of the time
evolution of the universe (Fig. 2) we are presented with the cos-
mic coincidence problem: why just now do we find ourselves at
the relatively brief interval during which this transition happens?
Carroll (2001a, 2001b) and Dodelson et al. (2000) find this co-
incidence to be a remarkable result that it is crucial to understand.

The cosmic coincidence problem is often regarded as an im-
portant unsolved problem whose solution may help unravel the

1 Planetary Science Institute, Research School of Astronomy and Astro-
physics and Research School of Earth Sciences, Australian National University,
Canberra, ACT, Australia; charley@mso.anu.edu.au.

2 Department of Astrophysics, School of Physics, University of New South
Wales, Sydney, NSW 2052, Australia.

853

The Astrophysical Journal, 671:853–860, 2007 December 10

# 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A.



nature of dark energy (Turner 2001; Carroll 2001a). The coinci-
dence problem is one of the main motivations for the tracker po-
tentials of quintessence models (Caldwell et al. 1998; Steinhardt
et al. 1999; Zlatev et al. 1999; Wang et al. 2000; Dodelson et al.
2000; Armendariz-Picon et al. 2000; Guo & Zhang 2005). In
these models the cosmological constant is replaced by a more
generic form of dark energy in which �m and �� are in near-
equality for extended periods of time. It is not clear that these
models successfully explain the coincidence without fine-tuning
(see Weinberg 2000; Bludman 2004).

The interpretation of the observation �m0
� ��0

as a remark-
able coincidence in need of explanation depends on some assump-
tions that we quantify to determine how surprising this apparent
coincidence is.We begin this quantification by introducing a time-
dependent proximity parameter,

r ¼ min
��

�m

;
�m

��

� �
; ð1Þ

which is equal to 1 when �m ¼ �� and is close to zero when
�m3�� or �mT��. The current value is r0 � 0:4. In Fig-
ure 2 we plot r as a function of log (scale factor) in the top panel
and as a function of log (time) in the bottom panel. These logarith-
mic axes allow a large dynamic range that makes our existence at

a time when r �1 appear to be an unlikely coincidence. This ap-
pearance depends on the implicit assumption that we could make
cosmological observations at any time with equal likelihood. More
specifically, the implicit assumption is that the a priori probabil-
ity distribution Pobs of the times we could have made our obser-
vations is uniform in log t or log a over the interval shown.
Our ability to quantify the significance of the coincidence de-

pends onwhetherwe assume thatPobs is uniform in time, log (time),
scale factor, or log (scale factor). That is, our result depends on
whether we assume Pobs(t) ¼ constant, Pobs( log t) ¼ constant,
Pobs(a) ¼ constant, or Pobs( log a) ¼ constant. These are the most
common possibilities, but there are others. For a discussion of the
relative merits of log and linear timescales and implicit uniform
priors, see x 3.3 and Jaynes (1968).
In Figure 3 we plot r(t) on an axis linear in time where the

implicit assumption is that the a priori probability distribution of
our existence is uniform in t over the intervals ½0; 100� Gyr (top
panel) and ½0; 13:8�Gyr (bottom panel). The bottom panel shows
that the observation r > 0:4 could have been made anytime dur-
ing the past 7.8 Gyr. Thus, our current observation that r0 � 0:4
does not appear to be a remarkable coincidence. Whether this
most recent 7.8 Gyr period is seen as ‘‘brief ’’ (in which case there
is an unlikely coincidence in need of explanation) or ‘‘long’’ (in
which case there is no coincidence to explain) depends onwhether
we view the issue in log time (Fig. 2) or linear time (Fig. 3).
A large dynamic range is necessary to present the fundamental

changes that occurred in the very early universe, e.g., the transi-
tions at the Planck time, inflation, baryogenesis, nucleosynthesis,
recombination, and the formation of the first stars. Thus, a loga-
rithmic time axis is often preferred by early universe cosmologists
because it seems obvious, from the point of view of fundamental
physics, that the cosmological clock ticks logarithmically. This
defensible view and the associated logarithmic axis gives the im-
pression that there is a coincidence in need of an explanation.
The linear time axis gives a somewhat different impression. Evi-
dently, deciding whether a coincidence is of some significance or
only an accident is not easy (Peebles 1999). We conclude that al-
though the importance of the cosmic coincidence problem is sub-
jective, it is important enough to merit the analysis we perform
here.
The interpretation of the observation �m0

� ��0
as a coinci-

dence in need of explanation depends on the a priori (not neces-
sarily uniform) probability distribution of our existence. That is,
it depends onwhen cosmological observers can exist.We propose
that the cosmic coincidence problem can be more constructively
evaluated by replacing these uninformed uniform priors with the
more realistic assumption that observers capable of measuring
cosmological parameters are dependent on the emergence of high-
density regions of the universe called terrestrial planets, which
require nontrivial amounts of time to form—and that once these
planets are in place, the observers themselves require nontrivial
amounts of time to evolve.
In this paper we use the age distribution of terrestrial planets

estimated by Lineweaver (2001) to constrain when in the history
of the universe observers on terrestrial planets can exist. In x 2
we briefly describe this age distribution (Fig. 4) and show how
it limits the existence of such observers to an interval in which
�m � �� (Fig. 5). Using this age distribution as a temporal se-
lection function, we compute the probability of an observer on a
terrestrial planet observing r � r0 (Fig. 6). In x 3 we discuss the
robustness of our result and find (Fig. 7) that this result is rela-
tively robust if the time it takes an observer to evolve on a terres-
trial planet is less than�10Gyr. In x 4we discuss and summarize
our results, and compare them to previous work to resolve the

Fig. 1.—Time dependence of the densities of the major components of the
universe. Given the observed Hubble constant, H0, and energy densities in the
universe today,�r0 ,�m0

, and��0
(radiation, matter, and cosmological constant),

we use the Friedmann equation to plot the temporal evolution of the components
of the universe in g cm�3 (top), or normalized to the time-dependent critical den-
sity �crit ¼ 3H(t)2/8�G (bottom). We assume an epoch of inflation at �10�35 s
after the big bang and a false vacuum energy density ��inf

between the Planck
scale and tGUT. See Table 1 and the Appendix for details.

LINEWEAVER & EGAN854 Vol. 671



cosmic coincidence problem (Garriga et al. 2000; Bludman &
Roos 2001).

2. HOW WE COMPUTE THE PROBABILITY
OF OBSERVING �m � ��

2.1. The Age Distribution of Terrestrial Planets
and New Observers

The mass histogram of detected extrasolar planets peaks at
low masses: dN /dM / M�1:7, suggesting that low-mass planets
are abundant (Lineweaver & Grether 2003). Terrestrial planet
formation may be a common feature of star formation (Wetherill
1996; Chyba 1999; Ida & Lin 2005). Whether terrestrial planets
are common or rare, they will have an age distribution propor-
tional to the star formation rate (SFR)—modified by the fact
that in the first �2 billion years of star formation, metallicities
are so low that the material for terrestrial planet formation will
not be readily available. Using these considerations, Lineweaver
(2001) estimated the age distribution of terrestrial planets—how
many Earths are produced by the universe per year, per Mpc3

(Fig. 4).
The shape of this distribution is largely determined by the de-

creasing SFR, since at least a redshift of�2 (for the past�8Gyr).
The shape of the distribution does not depend on the somewhat
controversial suppression of terrestrial planet formation by hot
Jupiters because this effect (if it exists; Mandell et al. 2007) only
affects a small number of the highest metallicity systems. If life
emerges rapidly on terrestrial planets (Lineweaver & Davis 2002),
then this age distribution is the age distribution of biogenesis in
the universe.

However, we are not just interested in any life; we would like
to know the distribution in time of when independent observers
first emerge and are able to measure�m and�� , as we are able to
do now. If life originates and evolves preferentially on terrestrial
planets, then the Lineweaver (2001) estimate of the age distribu-

tion of terrestrial planets is an a priori input which can guide our
expectations of when we (as members of a hypothetical group
of terrestrial-planet-bound observers) could have been present in
the universe. It takes time (if it happens at all) for life to emerge
on a new terrestrial planet and evolve into cosmologists who can
observe �m and ��. Therefore, to obtain the age distribution of
new independent observers able to measure the composition of
the universe for the first time, we need to shift the age distribution
of terrestrial planets by some characteristic time � tobs required
for observers to evolve. On Earth, it took� tobs � 4 Gyr for this
to happen. Whether this is characteristic of life elsewhere in the
universe is uncertain (Carter 1983; Lineweaver & Davis 2003).
For our initial analysis we use� tobs ¼ 4 Gyr as a nominal time to
evolve observers. In x 3.1 we allow�tobs to vary from 0 to 12Gyr
to see how sensitive our result is to these variations. Figure 4
shows the age distribution of terrestrial planet formation in the
universe shifted by�tobs ¼ 4 Gyr. This curve, labeled ‘‘Pobs’’ is
a crude prior for the temporal selection effect of when indepen-
dent observers can first measure r. Thus, if the evolution of biolog-
ical equipment capable of doing cosmology takes about �tobs �
4 Gyr, the ‘‘Pobs’’ in Figure 4 shows the age distribution of the
first cosmologists on terrestrial planets able to look at the uni-
verse and determine the overall energy budget, just as we have
recently been able to do.

2.2. The Probability of Observing �m � ��

In Figure 5 we zoom into the portion of Figure 1 containing
the relatively narrow window of time in which �m � ��. We
plot r (t) to show where r � 1, and we also plot the age distribu-
tion of planets and the age distribution of recently emerged cos-
mologists from Figure 4. The white area under the thick Pobs(t)
curve provides an estimate of the time distribution of new ob-
servers in the universe.We interpretPobs(t) as the probability dis-
tribution of the times at which new, independent observers are
able to measure r for the first time.

TABLE 1

Important Times in the History of the Universe (Some Used in Table 2)

Time after Big Bang

Event (ref ) Symbol (seconds) (Gyr)

Planck time, beginning of time ................................................... tPlanck 5:4 ; 10�44 1:7 ; 10�60

End of inflation, reheating, origin of matter, thermalization ...... treheat ½10�43; 10�33� ½10�60; 10�50�
Energy scale of Grand Unification Theories (GUT) .................. tGUT 10�33 10�50

Matter-antimatter annihilation, baryogenesis .............................. tbaryogenesis ½10�33; 10�12� ½10�50; 10�29�
Electromagnetic and weak nuclear forces diverge...................... telectroweak 10�12 10�29

Light atomic nuclei produced...................................................... tBBN ½100; 300� ½3; 9� ; 10�15

Radiation-matter equalitya ........................................................... tr-m 8:9 ; 1011 2:8 ; 10�5

Recombinationa (first chemistry)................................................. trec 1:2 ; 1013 0:38 ; 10�3

First thermal disequilibrium ........................................................ t1st therm-dis 1:2 ; 1013 0:38 ; 10�3

First stars, Pop III, reionizationa ................................................. t1st stars 1 ; 1016 0.4

First terrestrial planetsb ................................................................ t1st Earths 8 ; 1016 2.5

Last time r had same value as today .......................................... tr now 1:9 ; 1017 6.1

Formation of the Sun, Earthc ...................................................... tSun, tEarth 2:9 ; 1017 9.1

Matter-� equalityd ....................................................................... tm-� 3:0 ; 1017 9.4

Now.............................................................................................. t0 4:4 ; 1017 13.8

Last stars died .............................................................................. tlast stars 1022 106

Protons decayd ............................................................................. tproton decay 1045 1029

Supermassive black holes consume matterd................................ tblack holes 10107 1091

Maximum entropy (no gradients to drive life)d.......................... theat death 10207 10191

a Spergel et al. (2007); http://map.gsfc.nasa.gov.
b Lineweaver (2001).
c Allègre et al. (1995).
d Adams & Laughlin (1997).
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Lineweaver (2001) estimated that the Earth is relatively young
compared to other terrestrial planets in the universe. It follows
under the simple assumptions of our analysis that most terrestrial-
planet-bound observers will emerge earlier than we have. We
compute the fraction f of observers who have emerged earlier
than we have,

f ¼
R t0
0
Pobs(t) dtR 1

0
Pobs(t) dt

� 68%; ð2Þ

and find that 68% emerge earlier, while 32% emerge later. These
numbers are indicated in Figure 5.

2.3. Converting Pobs(t) to Pobs(r)

We have an estimate of the distribution in time of observers,
Pobs(t), and we have the proximity parameter r(t). We can then
convert these to a probability Pobs(r) of observed values of r.
That is, we change variables and convert the t-dependent prob-
ability to an r-dependent probability: Pobs(t) ! Pobs(r). Wewant
the probability distribution of the r values first observed by new
observers in the universe. Let the probability of observing r in
the interval dr be Pobs(r) dr. This is equal to the probability of
observing t in the interval dt, which is Pobs(t) dt.

Fig. 2.—Plot of the proximity factor r (see eq. [1]).When the matter and vac-
uum energy densities of the universe are the same (�m ¼ ��), we have r ¼ 1.We
currently observe �m0

� ��0
and, thus, r � 1. Our existence now when r � 1

appears to be an unlikely cosmic coincidence when the x-axis is logarithmic in the
scale factor (top) or logarithmic in time (bottom). In the top panel, following
Carroll (2001b), we have chosen a range of scale factors with ‘‘Now’’ midway
between the scale factor at the Planck time and the scale factor at the inverse
Planck time (aPlanck < a < a

�1
Planck). The brief epoch shown in gray between the

thin vertical lines is the epoch during which r > r0 (where r0 � 0:4 is the cur-
rently observed value). In the bottom panel the range shown on the x-axis is
tPlanck < t < 1022 s. The Planck time and Planck scale provide reasonably ob-
jective lower time limits. The upper limits are somewhat arbitrary but contribute
to the impression that r � 0:4 � 1 is an unlikely coincidence.

Fig. 3.—Plot of the proximity factor r, as in the previous figure, but plotted
here with a linear rather than a logarithmic time axis. The condition r > r0 �
0:4 does not seem as unlikely as in the previous figure. The range of time plotted
also affects this appearance; with the ½0; 100�Gyr range of the top panel, the time
interval highlighted in gray (where r > r0) appears narrow and relatively un-
likely. In contrast, the ½0; 13:8�Gyr range of the bottom panel seems to remove the
appearance of r > r0 being an unlikely coincidence in need of explanation; for
the first�6 Gyr we have r < r0, while in the subsequent 7.8 Gyr we have r > r0.
How can r > r0 be an unlikely coincidence when it has been true for most of the
history of the universe?

Fig. 4.—Terrestrial planet formation rate PFR(t) (thin solid line), derived in
Lineweaver (2001). This is an estimate of the age distribution of terrestrial plan-
ets in the universe. The estimated uncertainty, based on the uncertainty of the
SFR, is given by the thin dashed lines. To allow time for the evolution of observ-
ers on terrestrial planets, we shift this distribution by� tobs to obtain an estimate
of the age distribution of observers: Pobs(t) ¼ PFR(t �� tobs) (thick solid line).
The gray band represents the error estimate on Pobs(t), which is the shifted error
estimate on PFR(t). In the case shown here � tobs ¼ 4 Gyr, which is how long
it took life on Earth to emerge, evolve, and be able to measure the composition
of the universe. To obtain the numerical values on the y-axis, we have followed
Lineweaver (2001) and assumed that 1 out of 100 stars is orbited by a terrestrial
planet.We have smoothly extrapolated the PFR(t) of Lineweaver (2001) into the
future. This time dependence and our subsequent analysis do not depend on
whether the probability for terrestrial planets to produce observers is high or
low.
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Thus,

Pobs(r) dr ¼ Pobs(t) dt; ð3Þ

or, equivalently,

Pobs(r) ¼
Pobs(t)

dr=dt
; ð4Þ

where Pobs(t) ¼ PFR(t ��tobs) is the temporally shifted age dis-
tribution of terrestrial planets and dr/dt is the slope of r (t). Both
are shown in Figure 5. The distribution Pobs(r) is shown in

Figure 6, along with the upper and lower confidence limits on
Pobs(r) obtained by inserting the upper and lower confidence
limits of Pobs(t) (denoted ‘‘Pþ’’ and ‘‘P�’’ in Fig. 4) into equa-
tion (4) in place of Pobs(t).

The probability of observing r > r0 is

P(r > r0) ¼
Z 1

r0

Pobs(r) dr ¼
Z t0

t 0
Pobs(t) dt � 68%; ð5Þ

where t 0 is the time in the past when r was equal to its present
value, i.e., r(t 0) ¼ r(t0) ¼ r0 � 0:4.We have t 0 ¼ 6Gyr and t0 ¼
13:8 Gyr (see Fig. 3, bottom). This integral is shown graphically
in Figure 6 as the hatched area underneath the ‘‘Pobs(r)’’ curve,
between r ¼ r0 and r ¼ 1. We interpret this as follows: of all ob-
servers that have emerged on terrestrial planets, 68%will emerge
when r > r0 and thuswill find r > r0. The 68% from equation (2)
is only the same as the 68% from equation (5) because all observ-
ers who emerge earlier than we did, did so more recently than
7.8 billion years ago and, thus, observe r > r0 (Fig. 5).

We obtain estimates of the uncertainty on this 68% estimate
by computing analogous integrals underneath the curves labeled
Pþ and P� in Figure 6. These yield 82% and 59%, respectively.
Thus, under the assumptions made here, 68%þ14%

�10% of the observ-
ers in the universe will find �� and�m even closer to each other
than we do. This suggests that a temporal selection effect due
to the constraints on the emergence of observers on terrestrial
planets provides a plausible solution to the cosmic coincidence
problem. If observers in our universe evolve predominantly on
Earth-like planets (see the ‘‘principle of mediocrity’’ in Vilenkin
1995b), we should not be surprised to find ourselves on an Earth-
like planet and we should not be surprised to find ��0

� �m0
.

3. HOW ROBUST IS THIS 68% RESULT?

3.1. Dependence on the Timescale
for the Evolution of Observers

A necessary delay, required for the biological evolution of ob-
serving equipment—e.g., brains, eyes, and telescopes—makes

Fig. 5.—Zoom-in of the portion of Fig. 1 between 1 and 100 billion years after
the big bang, containing the relatively narrow window of time in which�m � ��.
The 99 Gyr time interval displayed here is indicated in Fig. 1 by the small gray
rectangle above the ‘‘Now’’ label. The proximity parameter r(t) (eq. [1], Figs. 2
and 3) is superimposed. The thin solid curve shows the age distribution of terrestrial
planets in the universe, while the thick solid curve is the lateral displacement of this
distribution by � tobs ¼ 4 Gyr. These distributions were presented in Fig. 4, but
here the time axis is logarithmic. We interpret Pobs as the frequency distribution of
new observers able to measure �m and �� for the first time. Since r(t) peaks at
about the same time as Pobs(t), large values of r will be observed more often than
small values.

Fig. 6.—Probability of new observers on terrestrial planets observing a
given r (eq. [4]). Given our estimate of the age distribution of new cosmologists
in the universe Pobs(t), the probability of observing�m and�� as close together
as they are, or closer, is the integral given in eq. (5), shown here as the hashed
area labeled 68%. The dashed lines labeled Pþ and P� arise from replacing
Pobs(t) in eq. (4) with the curves labeled Pþ and P� in Fig. 4.

Fig. 7.—Percentage of cosmologists who see r > r0 as a function of the time
� tobs it takes observers to evolve on a terrestrial planet. Since we have only
vague notions about how long it takes observers to evolve on a planet, we vary
� tobs between 0 and 12 billion years and show how the probability P(r > r0) of
observing r > r0 (eq. [5]) varies as a function of� tobs. The 68%þ14%

�10%
point plot-

ted is the result from Fig. 6 where� tobs ¼ 4 Gyr. If � tobs ¼ 0, we use the thin
solid curve in Fig. 5 asPobs(t) rather than the thick solid curve, and we obtain 55%.
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the observation of recent biogenesis unobservable (Lineweaver
& Davis 2002, 2003). That is, no observer in the universe can
wake up to observerhood and find that their planet is only a few
hours old. Thus, the timescale for the evolution of observers
� tobs > 0.

Our 68%þ14%
�10% result was calculated under the assumption that

evolution from a new terrestrial planet to an observer takes
� tobs � 4 Gyr. To determine how robust our result is to varia-
tions in�tobs, we perform the analysis of x 2 for 0 Gyr < � tobs <
12Gyr. The results are shown in Figure 7.Our 68%þ14%

�10%
result is the

data point plotted at� tobs ¼ 4 Gyr. If life takes �0 Gyr to evolve
to observerhood, once a terrestrial planet is in place Pobs(t) �
PFR(t), and 55% of new cosmologists would observe an r value
larger than the r0 � 0:4 that we actually observe today. If observ-
ers typically take twice as long aswe did to evolve (� tobs � 8Gyr),
there is still a large chance (�30%) of observing r > r0. If
� tobs > 11 Gyr, Pobs(t) in Figure 5 peaks substantially after r (t)
peaks, and the percentage of cosmologists who see r > r0 is
close to zero (eq. [5]). Thus, if the characteristic time it takes
for life to emerge and evolve into cosmologists is� tobsP10 Gyr,
our analysis provides a plausible solution to the cosmic coinci-
dence problem.

The Sun is moremassive than 94% of all stars. Therefore, 94%
of stars live longer than the t� � 10 Gyr main-sequence lifetime
of the Sun. This is mildly anomalous, and it is plausible that the
Sun’s mass has been anthropically selected. For example, perhaps
stars as massive as the Sun are needed to provide the UV photons

to jump start and energize the molecular evolution that leads to
life. If so, then �10 Gyr is a rough upper limit to the amount of
time a terrestrial planet with simple life has to produce observers.
Even if the characteristic time for life to evolve into observers is
much longer than 10Gyr, as concluded byCarter (1983), this UV
requirement that life-hosting stars have main-sequence lifetimes
P10 Gyr would lead to the extinction of most extraterrestrial life
before it can evolve into observers. This would lead to observers
waking to observerhood to find the age of their planet to be a
large fraction of the main-sequence lifetime of their star; the time
they took to evolve would satisfy� tobsP10 Gyr, and they would
observe that r � 1 and that other observers are very rare. Such is
our situation.
If we assume that we are typical observers (Vilenkin 1995a,

1995b, 1996a, 1996b) and that the coincidence problem must be
resolved by an observer selection effect (Bostrom 2002), then we
can conclude that the typical time it takes observers to evolve on
terrestrial planets is less than 10 Gyr (� tobs < 10 Gyr).

3.2. Dependence on the Age Distribution of Terrestrial Planets

The Pobs(t) used here (Fig. 5) is based on the SFR computed
in Lineweaver (2001). There is general agreement that the SFR
has been declining since redshifts z � 2. Current debate centers
aroundwhether that decline has only been since z � 2 or whether
the SFR has been declining from amuch higher redshift (Lanzetta
et al. 2002; Hopkins & Beacom 2006; Nagamine et al. 2006;
Thompson et al. 2006). Since Lineweaver (2001) assumed a

Fig. 8.—Demonstration of a variety of uniform observer distributions Pobs which, if used, result in the cosmic coincidence problem that the observed value of r is
unexpectedly high. The expected observed value of r depends strongly on the assumed distribution of observers over time t. The Pobs that are functions of log a or log t
have been normalized to the interval t rec to 100 Gyr. Panel a is the same as the top panel of Fig. 3. The probabilities that an observer would fall within the vertical light
gray band (r > r0) in panels a, b, c, and d are 8%; 7%; 0:2%, and 6%, respectively, and are given in the first row of Table 2.
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relatively high value for the SFR at redshifts above 2, this led to
a relatively high estimate of the metallicity of the universe at
z � 2, which corresponds to a relatively short delay (�2 Gyr) be-
tween the big bang and the first terrestrial planets. For the pur-
poses of this analysis, the early-SFR-dependent uncertainty in
the �2 Gyr delay is degenerate with, but much smaller than, the
uncertainty of� tobs. Thus, the variations of� tobs discussed above
subsume the SFR-dependent uncertainty in Pobs(t).

3.3. Dependence on Measure

In Figures 2 and 3 we illustrated how the importance of the
cosmic coincidence depends on the range over which one as-
sumes that the observation of r could have occurred. This in-
volved choosing the range�x shown on the x-axis in Figures 2
and 3. We also showed how the apparent significance of the co-
incidence depended on how one expressed that range, i.e., log-
arithmic in Figure 2 and linear in Figure 3. The coincidence
seems most compelling when �x is the largest and the problem
is presented on a logarithmic x-axis. This dependence is a specific
example of a ‘‘measure’’ problem (Aguirre & Tegmark 2005;
Aguirre et al. 2006).

The measure problem is illustrated in Figure 8, where we
plot four different uniform distributions of observers on a linear
time axis. In Figure 8a Pobs(t) ¼ constant. That is, we assume
that observers could find themselves anywhere between t rec ¼
380;000 yr and 100 Gyr after the big bang, with uniform prob-
ability (dark gray). In Figure 8b we make the different assump-
tion that observers are distributed uniformly in log t over the
same range in time. This means, for example, that the probability
of finding yourself between 0.1 and 1Gyr is the same as between
1 and 10 Gyr. We plot this as a function of linear time and find
that the distribution of observers (dark gray) is highest toward
earlier times.

To quantify and explore these dependencies further, in Table 2
we take the duration when r > r0 (call this interval�xr) and di-
vide it by various larger ranges�x (a range of time or scale fac-
tor). Thus, when the probability P(r > r0) ¼ �xr /�x isT1,
there is a low probability that one would find oneself in the in-
terval�xr and the cosmic coincidence is compelling. However,
when P(r > r0) � 1 the coincidence is not significant.

In Figures 8a, 8b, 8c, and 8d the probability of us observing
r � r0 (finding ourselves in the light gray area) is 8%, 7%, 0.2%,
and 6%, respectively. These values are given in the first row of
Table 2, along with analogous values when 11 other ranges for
�x are considered. Probabilities corresponding to the four pan-
els of Figures 2 and 3 are shown in Table 2. Our conclusion is that
this simple ratio method of measuring the significance of a coin-
cidence yields results that can vary by many orders of magnitude
depending on the range (�x) and measure (e.g., linear or logarith-
mic) chosen. The use of the nonuniform Pobs(t) shown in Figure 4
is not subject to these ambiguities in the choice of range and
measure.

4. DISCUSSION AND SUMMARY

Anthropic arguments to resolve the coincidence problem in-
clude Garriga et al. (2000) and Bludman & Roos (2001). Both
use a semianalytical formalism (Gunn & Gott 1972; Press &
Schechter 1974; Martel et al. 1998) to compute the number den-
sity, as a function of ��, of objects that collapse into large gal-
axies. This is then used as a measure of the number density of
intelligent observers. Our work complements these semianalytic
models by using observations of the SFR to constrain the pos-
sible times of observation. Our work also extends this previous
work by including the effect of�tobs, the time it takes observers
to evolve on terrestrial planets. This inclusion puts an important
limit on the validity of anthropic solutions to the coincidence
problem.

Garriga et al. (2000) is probably the work most similar to ours.
They take �� as a random variable in a multiverse model with a
prior probability distribution. For a wide range of �� (prescribed
by a prior based on inflation theory) they find approximate equal-
ity between the time of galaxy formation tG, the time when �
starts to dominate the energy density of the universe t�, and now
t0. That is, they find that, within 1 order ofmagnitude, tG � t� � t0.
Their analysis is more generic but approximate in that it addresses
the coincidence for a variety of values of �� to an order of mag-
nitude precision. Our analysis is more specific and empirical in
that we condition on our universe and use the Lineweaver (2001)
SFR-based estimate of the age distribution of terrestrial planets
to reach our main result (68%).

To compare our result to that of Garriga et al. (2000), we limit
their analysis to the �� observed in our universe (�� ¼ 6:7 ;
10�30 g cm�3) and differentiate their cumulative number of gal-
axies which have assembled up to a given time (their eq. [9]). We
find a broad time-dependent distribution for galaxy formation
which is the analog of our more empirical and narrower (by a
factor of 2 or 3) Pobs(t).

We have made the most specific anthropic explanation of the
cosmic coincidence using the age distribution of terrestrial plan-
ets in our universe and found this explanation fairly robust to the
largely uncertain time it takes observers to evolve. Our main re-
sult is an understanding of the cosmic coincidence as a temporal
selection effect if observers emerge preferentially on terrestrial
planets in a characteristic time�tobs < 10 Gyr. Under these plau-
sible conditions, we, and any observers in the universe who have
evolved on terrestrial planets, should not be surprised to find
�m0

� ��0
.

We would like to thank Paul Francis and Charles Jenkins for
helpful discussions. C. E. acknowledges a UNSW School of
Physics postgraduate fellowship.

TABLE 2

Probability P(r > r0) of Observing r > r0 Assuming a Uniform Distribution

of Observers Pobs in Linear Time, log (time), Scale Factor,
and log (scale factor) within the Range �x Listed

Range �x a P(r > r0) (%)

xmin xmax t log t a log a

t rec 100 Gyrb 8c 7 0.2 6

tPlanck tlast stars 8 ; 10�4 0:6d 10�104 10�3

tPlanck t0 60c 0:6 50 1

tPlanck t�1
Planck 30 0.3 30 0:5d

tPlanck theat death 10�188 0.1 10�10189 10�188

t rec tproton decay 10�26 1 10�1027 10�26

t rec tblack holes 10�88 0.4 10�1089 10�88

t rec theat death 10�188 0.2 10�10189 10�188

t1ststars tlast stars 8 ; 10�4 6 10�104 10�3

t1ststars tproton decay 10�26 1 10�1027 10�26

t1ststars tblack holes 10�88 0.4 10�1089 10�88

t1ststars theat death 10�188 0.2 10�10189 10�188

a See Table 1 for the times corresponding to cols. (1) and (2).
b The four values of P(r > r0) in the top row correspond to Fig. 8.
c These values correspond to the two panels of Fig. 3.
d These values correspond to the two panels of Fig. 2.
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APPENDIX

EVOLUTION OF DENSITIES

In the standard�CDMmodel the density parameters (�i � �i /�crit) of radiation, matter, and vacuum energy are currently observed to
be�r0 � (4:9� 0:5) ; 10�5,�m0

� 0:26� 0:03, and��0
� 0:74� 0:03, respectively, and Hubble’s constant is H0 ¼ 71� 3 km s�1

Mpc�1 (Spergel et al. 2007; Seljak et al. 2006). The energy densities in relativistic particles (‘‘radiation’’; i.e., photons, neutrinos, and
hot dark matter), nonrelativistic particles (‘‘matter’’; i.e., baryons and cold dark matter), and vacuum energy scale differently (Peacock
1999),

�i / a�3(wiþ1); ðA1Þ

where wradiation ¼ 1/3, wmatter ¼ 0, and w� ¼ �1 (Linder 1997). In a flat universe these add up to the critical density so the density
parameters obey the constraint (Peacock 1999)

�r þ �m þ �� ¼ 1: ðA2Þ

Figure 1 (top) illustrates these different dependencies on scale factor and time in terms of densities, while Figure 1 (bottom) shows the
corresponding normalized density parameters. A false vacuum energy ��inf

is assumed between the Planck scale and the GUTscale. Our
value for ��inf

is based on the constraint that at the GUT scale all the energy densities add up to ��inf
, which remains constant at earlier

times.
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